Complete Reference for Bitwise Operators in Programming/Coding
Last Updated :
28 Dec, 2023
There exists no programming language that doesn't use Bit Manipulations. Bit manipulation is all about these bitwise operations. They improve the efficiency of programs by being primitive, fast actions. There are different bitwise operations used in bit manipulation. These Bitwise Operators operate on the individual bits of the bit patterns. Bit operations are fast and can be used in optimizing time complexity.
Some common bit operators are:
Bitwise Operator Truth Table1. Bitwise AND Operator (&)
The bitwise AND operator is denoted using a single ampersand symbol, i.e. &. The & operator takes two equal-length bit patterns as parameters. The two-bit integers are compared. If the bits in the compared positions of the bit patterns are 1, then the resulting bit is 1. If not, it is 0.
Truth table of AND operatorExample:
Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2 . Take Bitwise and of both X & y
Bitwise ANDof (7 & 4)
Implementation of AND operator:
C++
#include
using namespace std;
int main()
{
int a = 7, b = 4;
int result = a & b;
cout << result << endl;
return 0;
}
Java
/*package whatever //do not write package name here */
import java.io.*;
class GFG {
public static void main (String[] args) {
int a = 7, b = 4;
int result = a & b;
System.out.println(result);
}
}
// This code is contributed by lokeshmvs21.
Python3
a = 7
b = 4
result = a & b
print(result)
# This code is contributed by akashish__
C#
using System;
public class GFG{
static public void Main (){
int a = 7, b = 4;
int result = a & b;
Console.WriteLine(result);
}
}
// This code is contributed by akashish__
JavaScript
let a = 7, b = 4;
let result = a & b;
console.log(result);
// This code is contributed by akashish__
Time Complexity: O(1)
Auxiliary Space: O(1)
2. Bitwise OR Operator (|)
The | Operator takes two equivalent length bit designs as boundaries; if the two bits in the looked-at position are 0, the next bit is zero. If not, it is 1.
.png)
Example:
Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2 . Take Bitwise OR of both X, y
Bitwise OR of (7 | 4)Explanation: On the basis of truth table of bitwise OR operator we can conclude that the result of
1 | 1 = 1
1 | 0 = 1
0 | 1 = 1
0 | 0 = 0
We used the similar concept of bitwise operator that are show in the image.
Implementation of OR operator:
C++
#include
using namespace std;
int main()
{
int a = 12, b = 25;
int result = a | b;
cout << result;
return 0;
}
Java
import java.io.*;
class GFG {
public static void main(String[] args)
{
int a = 12, b = 25;
int result = a | b;
System.out.println(result);
}
}
Python3
a = 12
b = 25
result = a | b
print(result)
# This code is contributed by garg28harsh.
C#
using System;
public class GFG{
static public void Main (){
int a = 12, b = 25;
int result = a | b;
Console.WriteLine(result);
}
}
// This code is contributed by akashish__
JavaScript
let a = 12, b = 25;
let result = a | b;
document.write(result);
// This code is contributed by garg28harsh.
Time Complexity: O(1)
Auxiliary Space: O(1)
3. Bitwise XOR Operator (^)
The ^ operator (also known as the XOR operator) stands for Exclusive Or. Here, if bits in the compared position do not match their resulting bit is 1. i.e, The result of the bitwise XOR operator is 1 if the corresponding bits of two operands are opposite, otherwise 0.
.png)
Example:
Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2 . Take Bitwise and of both X & y
Bitwise OR of (7 ^ 4)Explanation: On the basis of truth table of bitwise XOR operator we can conclude that the result of
1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
0 ^ 0 = 0
We used the similar concept of bitwise operator that are show in the image.
Implementation of XOR operator:
C++
#include
using namespace std;
int main()
{
int a = 12, b = 25;
cout << (a ^ b);
return 0;
}
Java
import java.io.*;
class GFG {
public static void main(String[] args)
{
int a = 12, b = 25;
int result = a ^ b;
System.out.println(result);
}
}
// This code is contributed by garg28harsh.
Python3
a = 12
b = 25
result = a ^ b
print(result)
# This code is contributed by garg28harsh.
C#
// C# Code
using System;
public class GFG {
static public void Main()
{
// Code
int a = 12, b = 25;
int result = a ^ b;
Console.WriteLine(result);
}
}
// This code is contributed by lokesh
JavaScript
let a = 12;
let b = 25;
console.log((a ^ b));
// This code is contributed by akashish__
Time Complexity: O(1)
Auxiliary Space: O(1)
4. Bitwise NOT Operator (!~)
All the above three bitwise operators are binary operators (i.e, requiring two operands in order to operate). Unlike other bitwise operators, this one requires only one operand to operate.
The bitwise Not Operator takes a single value and returns its one’s complement. The one’s complement of a binary number is obtained by toggling all bits in it, i.e, transforming the 0 bit to 1 and the 1 bit to 0.
Truth Table of Bitwise Operator NOTExample:
Take two bit values X and Y, where X = 5= (101)2 . Take Bitwise NOT of X.

Explanation: On the basis of truth table of bitwise NOT operator we can conclude that the result of
~1 = 0
~0 = 1
We used the similar concept of bitwise operator that are show in the image.
Implementation of NOT operator:
C++
#include
using namespace std;
int main()
{
int a = 0;
cout << "Value of a without using NOT operator: " << a;
cout << "\nInverting using NOT operator (with sign bit): " << (~a);
cout << "\nInverting using NOT operator (without sign bit): " << (!a);
return 0;
}
Java
/*package whatever //do not write package name here */
import java.io.*;
class GFG {
public static void main(String[] args)
{
int a = 0;
System.out.println(
"Value of a without using NOT operator: " + a);
System.out.println(
"Inverting using NOT operator (with sign bit): "
+ (~a));
if (a != 1)
System.out.println(
"Inverting using NOT operator (without sign bit): 1");
else
System.out.println(
"Inverting using NOT operator (without sign bit): 0");
}
}
// This code is contributed by lokesh.
Python3
a = 0
print("Value of a without using NOT operator: " , a)
print("Inverting using NOT operator (with sign bit): " , (~a))
print("Inverting using NOT operator (without sign bit): " , int(not(a)))
# This code is contributed by akashish__
C#
using System;
public class GFG {
static public void Main()
{
int a = 0;
Console.WriteLine(
"Value of a without using NOT operator: " + a);
Console.WriteLine(
"Inverting using NOT operator (with sign bit): "
+ (~a));
if (a != 1)
Console.WriteLine(
"Inverting using NOT operator (without sign bit): 1");
else
Console.WriteLine(
"Inverting using NOT operator (without sign bit): 0");
}
}
// This code is contributed by akashish__
JavaScript
let a =0;
document.write("Value of a without using NOT operator: " + a);
document.write( "Inverting using NOT operator (with sign bit): " + (~a));
if(!a)
document.write( "Inverting using NOT operator (without sign bit): 1" );
else
document.write( "Inverting using NOT operator (without sign bit): 0" );
OutputValue of a without using NOT operator: 0
Inverting using NOT operator (with sign bit): -1
Inverting using NOT operator (without sign bit): 1
Time Complexity: O(1)
Auxiliary Space: O(1)
5. Left-Shift (<<)
The left shift operator is denoted by the double left arrow key (<<). The general syntax for left shift is shift-expression << k. The left-shift operator causes the bits in shift expression to be shifted to the left by the number of positions specified by k. The bit positions that the shift operation has vacated are zero-filled.
Note: Every time we shift a number towards the left by 1 bit it multiply that number by 2.
Logical left ShiftExample:
Input: Left shift of 5 by 1.
Binary representation of 5 = 00101 and Left shift of 001012 by 1 (i.e, 00101 << 1)
Left shift of 5 by 1Output: 10
Explanation: All bit of 5 will be shifted by 1 to left side and this result in 010102, Which is equivalent to 10
Input: Left shift of 5 by 2.
Binary representation of 5 = 00101 and Left shift of 001012 by 1 (i.e, 00101 << 2)
Left shift of 5 by 2Output: 20
Explanation: All bit of 5 will be shifted by 1 to left side and this result in 101002, Which is equivalent to 20
Input: Left shift of 5 by 3.
Binary representation of 5 = 00101 and Left shift of 001012 by 1 (i.e, 00101 << 3)
Left shift of 5 by 3Output: 40
Explanation: All bit of 5 will be shifted by 1 to left side and this result in 010002, Which is equivalent to 40
Implementation of Left shift operator:
C++
#include
using namespace std;
int main()
{
unsigned int num1 = 1024;
bitset<32> bt1(num1);
cout << bt1 << endl;
unsigned int num2 = num1 << 1;
bitset<32> bt2(num2);
cout << bt2 << endl;
unsigned int num3 = num1 << 2;
bitset<16> bitset13{ num3 };
cout << bitset13 << endl;
}
Java
/*package whatever //do not write package name here */
import java.io.*;
class GFG {
public static void main(String[] args)
{
int num1 = 1024;
String bt1 = Integer.toBinaryString(num1);
bt1 = String.format("%32s", bt1).replace(' ', '0');
System.out.println(bt1);
int num2 = num1 << 1;
String bt2 = Integer.toBinaryString(num2);
bt2 = String.format("%32s", bt2).replace(' ', '0');
System.out.println(bt2);
int num3 = num1 << 2;
String bitset13 = Integer.toBinaryString(num3);
bitset13 = String.format("%16s", bitset13)
.replace(' ', '0');
System.out.println(bitset13);
}
}
// This code is contributed by akashish__
Python3
# Python code for the above approach
num1 = 1024
bt1 = bin(num1)[2:].zfill(32)
print(bt1)
num2 = num1 << 1
bt2 = bin(num2)[2:].zfill(32)
print(bt2)
num3 = num1 << 2
bitset13 = bin(num3)[2:].zfill(16)
print(bitset13)
# This code is contributed by Prince Kumar
C#
using System;
class GFG {
public static void Main(string[] args)
{
int num1 = 1024;
string bt1 = Convert.ToString(num1, 2);
bt1 = bt1.PadLeft(32, '0');
Console.WriteLine(bt1);
int num2 = num1 << 1;
string bt2 = Convert.ToString(num2, 2);
bt2 = bt2.PadLeft(32, '0');
Console.WriteLine(bt2);
int num3 = num1 << 2;
string bitset13 = Convert.ToString(num3, 2);
bitset13 = bitset13.PadLeft(16, '0');
Console.WriteLine(bitset13);
}
}
// This code is contributed by akashish__
JavaScript
// JavaScript code for the above approach
let num1 = 1024;
let bt1 = num1.toString(2).padStart(32, '0');
console.log(bt1);
let num2 = num1 << 1;
let bt2 = num2.toString(2).padStart(32, '0');
console.log(bt2);
let num3 = num1 << 2;
let bitset13 = num3.toString(2).padStart(16, '0');
console.log(bitset13);
Output00000000000000000000010000000000
00000000000000000000100000000000
0001000000000000
Time Complexity: O(1)
Auxiliary Space: O(1)
6. Right-Shift (>>)
The right shift operator is denoted by the double right arrow key (>>). The general syntax for the right shift is "shift-expression >> k". The right-shift operator causes the bits in shift expression to be shifted to the right by the number of positions specified by k. For unsigned numbers, the bit positions that the shift operation has vacated are zero-filled. For signed numbers, the sign bit is used to fill the vacated bit positions. In other words, if the number is positive, 0 is used, and if the number is negative, 1 is used.
Note: Every time we shift a number towards the right by 1 bit it divides that number by 2.
Logical Right ShiftExample:
Input: Left shift of 5 by 1.
Binary representation of 5 = 00101 and Left shift of 001012 by 1 (i.e, 00101 << 1)
Right shift of 5 by 1Output: 10
Explanation: All bit of 5 will be shifted by 1 to left side and this result in 010102, Which is equivalent to 10
Input: Left shift of 5 by 2.
Binary representation of 5 = 00101 and Left shift of 001012 by 1 (i.e, 00101 << 2)
Right shift of 5 by 2Output: 20
Explanation: All bit of 5 will be shifted by 1 to left side and this result in 101002, Which is equivalent to 20
Input: Left shift of 5 by 3.
Binary representation of 5 = 00101 and Left shift of 001012 by 1 (i.e, 00101 << 3)
Right shift of 5 by 3Output: 40
Explanation: All bit of 5 will be shifted by 1 to left side and this result in 010002, Which is equivalent to 40
Implementation of Right shift operator:
C++
#include
#include
using namespace std;
int main()
{
unsigned int num1 = 1024;
bitset<32> bt1(num1);
cout << bt1 << endl;
unsigned int num2 = num1 >> 1;
bitset<32> bt2(num2);
cout << bt2 << endl;
unsigned int num3 = num1 >> 2;
bitset<16> bitset13{ num3 };
cout << bitset13 << endl;
}
Java
// Java code for the above approach
class GFG {
public static void main(String[] args)
{
int num1 = 1024;
String bt1
= String
.format("%32s",
Integer.toBinaryString(num1))
.replace(' ', '0');
System.out.println(bt1);
int num2 = num1 >> 1;
String bt2
= String
.format("%32s",
Integer.toBinaryString(num2))
.replace(' ', '0');
System.out.println(bt2);
int num3 = num1 >> 2;
String bitset13
= String
.format("%16s",
Integer.toBinaryString(num3))
.replace(' ', '0');
System.out.println(bitset13);
}
}
// This code is contributed by ragul21
Python
num1 = 1024
bt1 = bin(num1)[2:].zfill(32)
print(bt1)
num2 = num1 >> 1
bt2 = bin(num2)[2:].zfill(32)
print(bt2)
num3 = num1 >> 2
bitset13 = bin(num3)[2:].zfill(16)
print(bitset13)
C#
using System;
class Program
{
static void Main()
{
int num1 = 1024;
// Right shift by 1
int num2 = num1 >> 1;
// Right shift by 2
int num3 = num1 >> 2;
// Print binary representations
string bt1 = Convert.ToString(num1, 2).PadLeft(32, '0');
string bt2 = Convert.ToString(num2, 2).PadLeft(32, '0');
string bitset13 = Convert.ToString(num3, 2).PadLeft(16, '0');
Console.WriteLine(bt1);
Console.WriteLine(bt2);
Console.WriteLine(bitset13);
}
}
JavaScript
// JavaScript code for the above approach
let num1 = 1024;
let bt1 = num1.toString(2).padStart(32, '0');
console.log(bt1);
let num2 = num1 >> 1;
let bt2 = num2.toString(2).padStart(32, '0');
console.log(bt2);
let num3 = num1 >> 2;
let bitset13 = num3.toString(2).padStart(16, '0');
console.log(bitset13);
// akashish__
Output00000000000000000000010000000000
00000000000000000000001000000000
0000000100000000
Time Complexity: O(1)
Auxiliary Space: O(1)
Application of BIT Operators
- Bit operations are used for the optimization of embedded systems.
- The Exclusive-or operator can be used to confirm the integrity of a file, making sure it has not been corrupted, especially after it has been in transit.
- Bitwise operations are used in Data encryption and compression.
- Bits are used in the area of networking, framing the packets of numerous bits which are sent to another system generally through any type of serial interface.
- Digital Image Processors use bitwise operations to enhance image pixels and to extract different sections of a microscopic image.
We use cookies to ensure you have the best browsing experience on our website. By using our site, you
acknowledge that you have read and understood our
Cookie Policy &
Privacy Policy
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
min 4 words, max Words Limit:1000
Thank You!
Your suggestions are valuable to us.
');
// $('.spinner-loading-overlay').show();
let script = document.createElement('script');
script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js';
script.defer = true
document.head.appendChild(script);
script.onload = function() {
suggestionModalEditor() //to add editor in suggestion modal
if(loginData && loginData.premiumConsent){
personalNoteEditor() //to load editor in personal note
}
}
script.onerror = function() {
if($('.editorError').length){
$('.editorError').remove();
}
var messageDiv = $('
').text('Editor not loaded due to some issues');
$('#suggestion-section-textarea').append(messageDiv);
$('.suggest-bottom-btn').hide();
$('.suggestion-section').hide();
editorLoaded = false;
}
});
//suggestion modal editor
function suggestionModalEditor(){
// editor params
const params = {
data: undefined,
plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"],
}
// loading editor
try {
suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true })
suggestEditorInstance._createEditor("")
$('.spinner-loading-overlay:eq(0)').remove();
editorLoaded = true;
}
catch (error) {
$('.spinner-loading-overlay:eq(0)').remove();
editorLoaded = false;
}
}
//personal note editor
function personalNoteEditor(){
// editor params
const params = {
data: undefined,
plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"],
placeholderText: "Description to be......",
}
// loading editor
try {
let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true })
notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"")
$('.spinner-loading-overlay:eq(0)').remove();
editorLoaded = true;
}
catch (error) {
$('.spinner-loading-overlay:eq(0)').remove();
editorLoaded = false;
}
}
var lockedCasesHtml = `
You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`;
var badgesRequiredHtml = `
It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.However, you can still create improvements through the Pick for Improvement section.`;
jQuery('.improve-header-sec-child').on('click', function(){
jQuery('.improve-modal--overlay').hide();
$('.improve-modal--suggestion').hide();
jQuery('#suggestion-modal-alert').hide();
});
$('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked
$('.ContentEditable__root').text("");
$('.suggest-bottom-btn').html("Suggest changes");
$('.thank-you-message').css("display","none");
$('.improve-modal--improvement').hide();
$('.improve-modal--suggestion').show();
$('#suggestion-section-textarea').show();
jQuery('#suggestion-modal-alert').hide();
if(suggestEditorInstance !== null){
suggestEditorInstance.setEditorValue("");
}
$('.suggestion-section').css('display', 'block');
jQuery('.suggest-bottom-btn').css("display","block");
});
$('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown
if(loginData && loginData.isLoggedIn) {
$('body').append('
');
$('.spinner-loading-overlay').show();
jQuery.ajax({
url: writeApiUrl + 'create-improvement-post/?v=1',
type: "POST",
contentType: 'application/json; charset=utf-8',
dataType: 'json',
xhrFields: {
withCredentials: true
},
data: JSON.stringify({
gfg_id: post_id
}),
success:function(result) {
$('.spinner-loading-overlay:eq(0)').remove();
$('.improve-modal--overlay').hide();
$('.unlocked-status--improve-modal-content').css("display","none");
$('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank');
$('.create-improvement-redirection-to-write')[0].click();
},
error:function(e) {
showErrorMessage(e.responseJSON,e.status)
},
});
}
else {
if(loginData && !loginData.isLoggedIn) {
$('.improve-modal--overlay').hide();
if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) {
$('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click();
}
return;
}
}
});
$('.left-arrow-icon_wrapper').on('click',function(){
if($('.improve-modal--suggestion').is(":visible"))
$('.improve-modal--suggestion').hide();
else{
}
$('.improve-modal--improvement').show();
});
const showErrorMessage = (result,statusCode) => {
if(!result)
return;
$('.spinner-loading-overlay:eq(0)').remove();
if(statusCode == 403) {
$('.improve-modal--improve-content.error-message').html(result.message);
jQuery('.improve-modal--overlay').show();
jQuery('.improve-modal--improvement').show();
$('.locked-status--impove-modal').css("display","block");
$('.unlocked-status--improve-modal-content').css("display","none");
$('.improve-modal--improvement').attr("status","locked");
return;
}
}
function suggestionCall() {
var editorValue = suggestEditorInstance.getValue();
var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() {
return $(this).text().trim();
}).get().join(' ');
suggest_val = suggest_val.replace(/\s+/g, ' ').trim();
var array_String= suggest_val.split(" ") //array of words
var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val();
var error_msg = false;
if(suggest_val != "" && array_String.length >=4){
if(editorValue.length <= 2000){
var payload = {
"gfg_post_id" : `${post_id}`,
"suggestion" : `${editorValue}`,
}
if(!loginData || !loginData.isLoggedIn) // User is not logged in
payload["g-recaptcha-token"] = gCaptchaToken
jQuery.ajax({
type:'post',
url: "https://apiwrite.geeksforgeeks.org/suggestions/auth/create/",
xhrFields: {
withCredentials: true
},
crossDomain: true,
contentType:'application/json',
data: JSON.stringify(payload),
success:function(data) {
if(!loginData || !loginData.isLoggedIn) {
grecaptcha.reset();
}
jQuery('.spinner-loading-overlay:eq(0)').remove();
jQuery('.suggest-bottom-btn').css("display","none");
$('#suggestion-section-textarea').hide()
$('.thank-you-message').css('display', 'flex');
$('.suggestion-section').css('display', 'none');
jQuery('#suggestion-modal-alert').hide();
},
error:function(data) {
if(!loginData || !loginData.isLoggedIn) {
grecaptcha.reset();
}
jQuery('.spinner-loading-overlay:eq(0)').remove();
jQuery('#suggestion-modal-alert').html("Something went wrong.");
jQuery('#suggestion-modal-alert').show();
error_msg = true;
}
});
}
else{
jQuery('.spinner-loading-overlay:eq(0)').remove();
jQuery('#suggestion-modal-alert').html("Minimum 4 Words and Maximum Words limit is 1000.");
jQuery('#suggestion-modal-alert').show();
jQuery('.ContentEditable__root').focus();
error_msg = true;
}
}
else{
jQuery('.spinner-loading-overlay:eq(0)').remove();
jQuery('#suggestion-modal-alert').html("Enter atleast four words !");
jQuery('#suggestion-modal-alert').show();
jQuery('.ContentEditable__root').focus();
error_msg = true;
}
if(error_msg){
setTimeout(() => {
jQuery('.ContentEditable__root').focus();
jQuery('#suggestion-modal-alert').hide();
}, 3000);
}
}
document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){
jQuery('body').append('
');
jQuery('.spinner-loading-overlay').show();
if(loginData && loginData.isLoggedIn) {
suggestionCall();
return;
}
// script for grecaptcha loaded in loginmodal.html and call function to set the token
setGoogleRecaptcha();
});
$('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked
$('body').append('
');
$('.spinner-loading-overlay').show();
// send this option via create-improvement-post api
jQuery.ajax({
url: writeApiUrl + 'create-improvement-post/?v=1',
type: "POST",
contentType: 'application/json; charset=utf-8',
dataType: 'json',
xhrFields: {
withCredentials: true
},
data: JSON.stringify({
gfg_id: post_id
}),
success:function(result) {
$('.spinner-loading-overlay:eq(0)').remove();
$('.improve-modal--overlay').hide();
$('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank');
$('.create-improvement-redirection-to-write')[0].click();
},
error:function(e) {
showErrorMessage(e.responseJSON,e.status);
},
});
});
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"