Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • DSA Tutorial
  • Data Structures
  • Algorithms
  • Array
  • Strings
  • Linked List
  • Stack
  • Queue
  • Tree
  • Graph
  • Searching
  • Sorting
  • Recursion
  • Dynamic Programming
  • Binary Tree
  • Binary Search Tree
  • Heap
  • Hashing
  • Divide & Conquer
  • Mathematical
  • Geometric
  • Bitwise
  • Greedy
  • Backtracking
  • Branch and Bound
  • Matrix
  • Pattern Searching
  • Randomized
Open In App
Next Article:
Unsigned and Signed Numbers Representation in Binary Number System
Next article icon

Unsigned and Signed Numbers Representation in Binary Number System

Last Updated : 08 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

The binary number system uses only two digits, 0 and 1, to represent all data in computing and digital electronics. Understanding unsigned and signed numbers is important for efficient data handling and accurate computations in these fields.

  • The binary system forms the foundation of all digital systems, enabling devices to process and store data.
  • Unsigned numbers represent only positive values while signed numbers handle both positive and negative values using methods like two’s complement.
  • Mastering these concepts is essential for programming, error-free calculations and optimizing system performance.
  • Its real-world applications include computer arithmetic, embedded systems and digital signal processing.

Unsigned Numbers

Unsigned numbers are numeric values that represent only non-negative quantities (zero and positive values). In the binary system, unsigned numbers are represented using only the magnitude of the value, with each bit contributing to its total. The smallest unsigned number is always zero (all bits set to 0), while the maximum value depends on the number of bits used.

Range of Unsigned Numbers in Binary System:

The range depends directly on the bit length. For an n-bit number:

  • Minimum value: 0
  • Maximum value: 2n - 1

Range of unsigned numbers: 0 to 2n-1

Example:

  • 4-bit Number: Ranges 0 to 15.
  • 8-bit Number: Ranges 0 to 255.
  • 16-bit Number: Ranges 0 to 65,535.

Use Cases of Unsigned Binary Representation:

Unsigned binary numbers serve fundamental roles across computing systems where negative values aren't needed.

  • Every byte in RAM gets a unique unsigned address. A 32-bit system can access 4GB of memory (0 to 4,294,967,295).
  • RGB color values (0-255) use 8-bit unsigned numbers per channel. Image dimensions and pixel counts also rely on unsigned ranges.
  • Microprocessors use unsigned values for status flags and control signals where only positive states exist.
  • Packet sizes, port numbers and IP header fields often use unsigned integers to prevent negative interpretations.
  • Sensor readings (like temperature or light intensity) and timer counts utilize unsigned formats when negative measurements are impossible.

Signed Numbers

Signed numbers represent both positive and negative values in computing by allocating one bit (typically the MSB) as a sign indicator. In binary representation, they enable negative value storage through three primary methods:

  • Sign-Magnitude
  • 1's Complement
  • 2's Complement

The 2's complement method dominates modern systems due to its arithmetic efficiency and absence of redundant zero representations.

Sign-Magnitude Representation

This method uses the leftmost bit as a sign flag (0 for positive, 1 for negative) while remaining bits store the absolute value. It creates two zero representations (+0 and -0) and complicates arithmetic operations due to separate sign handling.

Range of Sign-Magnitude Representation

-2n-1 - 1 to 2n-1 - 1

Example: In 8-bit system

  • Decimal number +25 is represented as 00011001 (Sign bit 0, magnitude 25)
  • Decimal number -25 is represented as 10011001 (Sign bit 1, magnitude 25)
Sign - Magnitude Representation
Sign - Magnitude Representation

Why Sign-Magnitude Fails in Practice

  • Wastes a representable value by encoding both +0 (0000) and -0 (1000), creating unnecessary complexity in comparisons and arithmetic.
  • Basic calculations fail because the sign bit requires separate handling. Adding positive and negative versions of the same number doesn't produce zero.
  • Requires extra circuitry to manage sign bits during calculations, slowing down processors compared to complement systems.
  • Effectively loses one bit of precision since the sign bit doesn't contribute to magnitude, unlike modern systems that use all bits for value representation.

1's Complement Representation

In 1's complement, negative numbers are created by flipping all bits of the positive counterpart. The leftmost bit still indicates sign (0 for positive, 1 for negative). This method also suffers from dual zero representations (0000 as +0 and 1111 as -0) but it simplifies subtraction through bit inversion.

Range of 1's Complement Representation

-2n-1 - 1 to 2n-1 - 1

Example: In 8-bit system

  • Decimal number +18 is represented as 00010010
  • Decimal number -18 is represented as 11101101 (All bits flipped)

Critical Flaws of 1's Complement

  • Maintains two zero forms (0000 and 1111) wasting a valid number representation and complicating equality checks.
  • Forces an extra addition step when carry bits overflow making arithmetic slower than 2's complement.
  • Basic math operations need sign-bit checks creating hardware complexity modern systems avoid.
  • While better than sign-magnitude its quirks made 2's complement the universal standard for binary arithmetic.

2's Complement Representation

2's complement forms negative numbers by inverting all bits of the positive value and adding 1. The leftmost bit serves as the sign indicator while enabling single zero representation. It simplifies hardware design by allowing identical addition and subtraction operations.

2s_Complement
2's Complement

Range of 2's Complement Representation

-2n-1 to 2n-1 - 1

Example: In 8-bit system

  • Decimal number +20 is represented as 00010100
  • Decimal number -20 is represented as 11101100 (Invert bits: 11101011, then add 1)

Limitations of 2's Complement

  • In a fixed-bit system, 2's complement has a limited range. For an n-bit system, it represents values from -2(n-1) to 2(n-1) - 1, restricting the number of values that can be processed.
  • The range for positive numbers is smaller than negative numbers. Negative values range from -2(n-1) to -1, while positive values range from 0 to 2(n-1) - 1, creating an imbalance.
  • Overflow occurs when arithmetic operations exceed the representable range, leading to incorrect results.
  • Operations like addition and subtraction become complex with sign extension, especially for numbers of different sizes.
  • The zero in 2's complement has only one form, while negative numbers have a mirrored representation (e.g., -1 is 111...1), complicating algorithms like multiplication.

Note:

Key Differences Between Unsigned and Signed Number Representations

Feature

Unsigned Numbers

Sign-Magnitude

1's Complement

2's Complement

Representation

Only positive values

Sign bit + absolute value

Bit inversion of positives

Bit inversion + 1

Zero Values

Single zero (00...0)

Two zeros (+0/-0)

Two zeros (+0/-0)

Single zero (00...0)

Range (8-bit)

0 to 255

-127 to +127

-127 to +127

-128 to +127

Hardware Complexity

Simplest

Moderate (sign handling)

Moderate (end-around carry)

Most efficient

Arithmetic Operations

Straightforward

Requires sign checks

Needs carry adjustment

Uniform handling

Modern Usage

Common for counters/addresses

Rarely used

Obsolete

Industry standard


Next Article
Unsigned and Signed Numbers Representation in Binary Number System
author
babayaga2
Improve
Article Tags :
  • GATE CS
  • Digital Logic
  • DSA

Similar Reads

    Binary representation of a given number
    Given an integer n, the task is to print the binary representation of the number. Note: The given number will be maximum of 32 bits, so append 0's to the left if the result string is smaller than 30 length.Examples: Input: n = 2Output: 00000000000000000000000000000010Input: n = 0Output: 000000000000
    6 min read
    Convert all numbers in range [L, R] to binary number
    Given two positive integer numbers L and R. The task is to convert all the numbers from L to R to binary number. Examples: Input: L = 1, R = 4Output: 11011100Explanation: The binary representation of the numbers 1, 2, 3 and 4 are: 1 = (1)22 = (10)23 = (11)24 = (100)2 Input: L = 2, R = 8Output:101110
    5 min read
    Representation of Negative Binary Numbers
    In computer systems, binary numbers use only two symbols: 0 and 1. Unlike decimal numbers, binary numbers cannot include a plus (+) or minus (-) symbol directly to denote positive or negative values. Instead, negative binary numbers are represented using specific methods that incorporate a special b
    3 min read
    Check if binary representations of two numbers are anagram
    Given two numbers you are required to check whether they are anagrams of each other or not in binary representation.Examples: Input : a = 8, b = 4 Output : Yes Binary representations of both numbers have same 0s and 1s. Input : a = 4, b = 5 Output : No Simple Approach: Find the Binary Representation
    9 min read
    Minimum number using set bits of a given number
    Given an unsigned number, find the minimum number that could be formed by using the bits of the given unsigned number. Examples : Input : 6 Output : 3 Binary representation of 6 is 0000....0110. Smallest number with same number of set bits 0000....0011. Input : 11 Output : 7 Simple Approach: 1. Find
    4 min read
    Binary representation of previous number
    Given a binary input that represents binary representation of positive number n, find binary representation of n-1. It may be assumed that input binary number is greater than 0.The binary input may or may not fit even in unsigned long long int. Examples: Input : 10110Output : 10101Here n = (22)10 =
    6 min read
    Convert a number into negative base representation
    A number n and a negative base negBase is given to us, we need to represent n in that negative base. Negative base works similar to positive base. For example in base 2 we multiply bits to 1, 2, 4, 8 and so on to get actual number in decimal. In case of base -2 we need to multiply bits with 1, -2, 4
    6 min read
    Division Algorithm in Signed Magnitude Representation
    The Division of two fixed-point binary numbers in the signed-magnitude representation is done by the cycle of successive compare, shift, and subtract operations. The binary division is easier than the decimal division because the quotient digit is either 0 or 1. Also, there is no need to estimate ho
    3 min read
    Find value of k-th bit in binary representation
    Given a number n and k (1 <= k <= 32), find the value of k-th bit in the binary representation of n. Bits are numbered from right (Least Significant Bit) to left (Most Significant Bit). Examples : Input : n = 13, k = 2 Output : 0 Explanation: Binary representation of 13 is 1101. Second bit fro
    5 min read
    Number of mismatching bits in the binary representation of two integers
    Given two integers(less than 2^31) A and B. The task is to find the number of bits that are different in their binary representation. Examples: Input : A = 12, B = 15 Output : Number of different bits : 2 Explanation: The binary representation of 12 is 1100 and 15 is 1111. So, the number of differen
    8 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

'); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
'); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length <= 2000){ var payload = { "gfg_post_id" : `${post_id}`, "suggestion" : `${editorValue}`, } if(!loginData || !loginData.isLoggedIn) // User is not logged in payload["g-recaptcha-token"] = gCaptchaToken jQuery.ajax({ type:'post', url: "https://apiwrite.geeksforgeeks.org/suggestions/auth/create/", xhrFields: { withCredentials: true }, crossDomain: true, contentType:'application/json', data: JSON.stringify(payload), success:function(data) { if(!loginData || !loginData.isLoggedIn) { grecaptcha.reset(); } jQuery('.spinner-loading-overlay:eq(0)').remove(); jQuery('.suggest-bottom-btn').css("display","none"); $('#suggestion-section-textarea').hide() $('.thank-you-message').css('display', 'flex'); $('.suggestion-section').css('display', 'none'); jQuery('#suggestion-modal-alert').hide(); }, error:function(data) { if(!loginData || !loginData.isLoggedIn) { grecaptcha.reset(); } jQuery('.spinner-loading-overlay:eq(0)').remove(); jQuery('#suggestion-modal-alert').html("Something went wrong."); jQuery('#suggestion-modal-alert').show(); error_msg = true; } }); } else{ jQuery('.spinner-loading-overlay:eq(0)').remove(); jQuery('#suggestion-modal-alert').html("Minimum 4 Words and Maximum Words limit is 1000."); jQuery('#suggestion-modal-alert').show(); jQuery('.ContentEditable__root').focus(); error_msg = true; } } else{ jQuery('.spinner-loading-overlay:eq(0)').remove(); jQuery('#suggestion-modal-alert').html("Enter atleast four words !"); jQuery('#suggestion-modal-alert').show(); jQuery('.ContentEditable__root').focus(); error_msg = true; } if(error_msg){ setTimeout(() => { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
'); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
'); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
Continue without supporting
`; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences