
Context-Aware Scanning for Parsing Extensible Languages

Eric R. Van Wyk August C. Schwerdfeger
Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, USA

evw@cs.umn.edu, schwerdf@cs.umn.edu

Abstract
This paper introduces new parsing and context-aware scanning al-
gorithms in which the scanner uses contextual information to dis-
ambiguate lexical syntax. The parser uses a slightly modified LR-
style algorithm that passes to the scanner the set of valid symbols
that the scanner may return at that point in parsing. This set is those
terminals whose entries in the parse table for the current parse state
are shift, reduce, or accept, but not error. The scanner then only
returns tokens in this set. An analysis is given that can statically
verify that the scanner will never return more than one token for
a single input. Context-aware scanning is especially useful when
parsing and scanning extensible languages in which domain spe-
cific languages can be embedded. It has been used in extensible
versions of Java 1.4 and ANSI C. We illustrate this approach with
a declarative specification of a subset of Java and extensions that
embed SQL queries and Boolean expression tables into Java.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory:Syntax

General Terms Languages

Keywords extensible languages, context-aware scanning

1. Introduction
In previous work [15] we have argued that one of the fundamen-
tal challenges to developing robust, reliable software in a timely
manner is the semantic gap between a programmer’s high-level,
domain-specific knowledge of a problem’s solution and the com-
paratively low-level language in which the solution to the prob-
lem must be encoded. When general purpose languages, such as
Java or C, can be extended with domain-specific language features,
this gap can be narrowed. Our interests have been in the specifica-
tion and implementation of extensible languages and composable
language extensions, which add language features that define new
syntax (notations) so that domain-specific concepts can be written
in a natural way, and define new semantic analysis so that domain-
specific analysis and error-checking can be performed. Our previ-
ous work has focused on the specification and composition of the
semantic aspects of such language extensions [14]. This paper ad-
dresses the specification, implementation, and composition of the
syntactic aspects of extensible languages.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’07, October 1–3, 2007, Salzburg, Austria.
Copyright c© 2007 ACM 978-1-59593-855-8/07/0010. . . $5.00

In this paper we present new parsing and scanning algorithms
in which the parsing context is used by the scanner in determining
which terminal symbol among the possible matches it should re-
turn to the parser. The parsing algorithm is a slight modification of
the LR algorithm. When calling the scanner for the next token, it
passes thereto the set of terminals that, in the current parse state,
may be part of a valid phrase in the language. This set is called
the valid lookaheadset, and for any state in the LR parsing table
it consists of all terminals whose entry for that state in the table is
shift, reduce, or accept. Terminals whose entry for the state areer-
ror — i.e., those that are syntactically invalid at the parser’s current
position in the input — are not in the valid lookahead set. The scan-
ning algorithm is a modification of traditional deterministic-finite-
automaton-based algorithms that makes use of the valid lookahead
set. As an example, consider parsing the Java 1.5 type expression
“List<List<Integer>>”. After recognizingInteger as a type,
the parser is in a state in which the greater-than symbol> is in
the valid lookahead set, but the right bit shift operator>> is not.
This scanning algorithm subordinates the disambiguation principle
of maximal munch to the principle of disambiguation by context;
it will return a short valid match before a long invalid match. Thus,
the scanner returns the expected symbol and the grammar describ-
ing type expressions is simplified.

Our motivation in developing these parsing and scanning algo-
rithms, and their generation algorithms, was to parse extensible lan-
guages. An example of a program written in an extended language
is shown in Figure 1. It is written in Java−, a small subset of Java,
augmented with two extensions. The first extension embeds SQL
and relational-database type schema specifications into Java so that
SQL queries can be written directly and also statically checked for
syntax and type errors [15]. Theconnection construct specifies
the database location and lists the tables and their field names and
types, which are used to typecheck queries statically. The example
query given in theusing construct names the connection to the
database on which the query should execute.

The second extension addscondition tables, a construct found
in specification languages such as SCR [7] and used for specifying
complex Boolean conditions in a tabular format. In each row of
the table there are “truth value” entriesT (true), F (false), or*
(don’t-care) indicating the desired truth value of the preceding
Boolean expression. Tables can be read by taking for each column
the conjunction of the truth-value modified expressions, and then
taking the disjunction of these conjunction expressions. Therefore,
the assignment tob in Figure 1 is semantically equivalent to the
pure-Java code shown below:

b = (age > 40 && gender == "M") ||
(true && !(gender == "M")) ;

As the focus of this paper is on parsing and scanning, we will not
concern ourselves further with the semantics of these extensions.

class Demo {
int demoMethod () {
List<List<Integer>> dlist ;
int SELECT ;
int T ;
connection c "jdbc:derby:/home/derby/db/testdb"
with table person [person_id INTEGER,

first_name VARCHAR,
last_name VARCHAR] ,

table details [person_id INTEGER,
age INTEGER,
gender VARCHAR] ;

Integer limit ;
limit = 18 ;
ResultSet rs ;
rs = using c query

{ SELECT age, gender, last_name
FROM person , details
WHERE person.person_id =

details.person_id
AND phonebook.age > limit } ;

Integer age ;
age = rs.getInteger("age");
String gender ;
gender = rs.getString("gender");
boolean b ;
b = table (age > 40 : T * ,

gender == "M" : T F) ;
}
}

Figure 1. Sample program in Java− extended with SQL and con-
dition tables.

There are aspects of this program that are difficult for tradi-
tional (and other) scanning and parsing techniques to handle. This
is partly due to the fact that the extended language’s concrete syn-
tax is the composition of that defining the host language and ex-
tensions, and that the extension grammars may be written indepen-
dently of each other, the one knowing nothing of the other. Also,
the embedded DSLs and language fragments may have their own
notions of reserved keywords and operator precedence or associa-
tivity settings that are different from those in the host language.
Some challenges in parsing the program in Figure 1 include:

1. Context-based preference of keywords: “SELECT” is recog-
nized as a SQL keyword in the context of an SQL query, but
will be recognized as Java− identifier in other contexts.

2. Context-based keyword disambiguation: The string “table” is
recognized as either an SQL keyword or a condition table key-
word, again, depending on the context.

3. Context-dependent operator precedence and associativity: The
expressions in SQL “where” clauses use “=” for equality in-
stead of the Java− “==”. The “=” operator has precedence and
associativity specifications for SQL expressions that are not
valid for Java− assignment statements.

More generally, as extensions may be written independently of
one another we must be concerned with the possibility of introduc-
ing syntactic ambiguities into the grammar when combining host
and language extension specifications. Similarly, lexical ambigui-
ties may be introduced, causing the scanner to match more than one
terminal on some input string.

The primary contributions of this paper are:

• Deterministic parsing and scanning algorithms that can handle
a wider range of languages and are especially appropriate for
extensible languages in which DSLs can be embedded.

• Modifications to DFA-based scanner-generation algorithms to
support context-aware scanning.

• An analysis that can verify at scanner-generation time that the
scanner is deterministic,i.e., for any input and for any parse
state, it will never return more than one token.

Section 2 describes concrete syntax specifications used to gener-
ate the parsers and scanners that use context-aware scanning. Sec-
tion 3 describes the modified LR parsing algorithm that uses the
context-aware scanning algorithm described in Section 4. Section 5
shows how the specifications can be statically analyzed to guaran-
tee that the parser and the scanner are deterministic. Section 6 de-
scribes the features and performance of a tool called Copper that
implements these processes and discusses our experience in using
these tool to build parsers and scanners for Java 1.4, several ex-
tensions to Java 1.4, AspectJ, ANSI C, and Promela. Section 7 de-
scribes related work and Section 8 concludes.

2. Extensible language specifications
Along with our colleagues, we have developed tools for building
extensible language frameworks in which a programmer can import
into his or her host language the combination of domain-specific
(or general-purpose) language extensions that raise the level of ab-
straction of the language to that of the task at hand. We have used
these tools to develop an extensible specification of Java [15] and
an extensible specification of Lustre [5], a synchronous language
used in modeling safety-critical systems. In each language frame-
work, the host language and the language extensions are written in
Silver [13], an attribute grammar (AG) specification language that
also includes specifications for concrete syntax. The Silver tools
support the modular specification of language extensions and their
composition with the host language such that in many cases the
programmer does not need any implementation-level knowledge of
the language extensions — the composition of the host language
and the programmer-selected extensions is automatic.

In this paper, we describe the specification of the concrete syn-
tax of the host language and language extensions, the composition
of these specifications, and the algorithms for parsing and scanning
the extended (composed) language. Figures 2, 3, and 4 present the
concrete syntax (syntactic and lexical) extracted from their corre-
sponding Silver specifications. The three specifications are com-
bined to form the concrete specification of the extended language.
They are written in a notation very much like Silver, but without the
AG aspects and with a few notational conveniences (such as “|” in
production rules) that simplify the presentation.

Host language specifications: Figure 2 describes the concrete
syntax of the host language Java−, a subset of Java1 used in this
paper for explanatory purposes. This grammar, when combined
with the extension grammars, is sufficient for parsing the example
program in Figure 1. The host language is a context free grammar
H = 〈Sh, Th, NTh, Ph,≻h〉, consisting of a start symbol, sets
of terminals, nonterminals, and productions, and a binary relation
≻h over terminalsTh. ≻h is used to set lexical precedences for
terminals whose regular expressions define overlapping languages.
A common use is in specifying that keywords take precedence
over identifiers. This relation is specified in thelexer classes,
submitsTo anddominates clauses and is defined precisely below.

1 This is not strictly true — althoughInteger andString are not actually
reserved keywords in Java, we make them so here for pedagogical reasons.

grammar edu:umn:cs:melt:simplejava:host ;

-- NonTerminals
start nt Root ;
nt Class, ClassMem, ClassMems, Type, Params,

Stmt, Stmts, Expr ;

-- Terminals
t IntLit_t /[0-9]+/ ;
t StrLit_t /[\"][^\"]*[\"]/ ;

lexer class host_kwd ;
t Int_t ’int’ lexer classes = { host_kwd } ;
t Integer_t ’Integer’ lexer classes = { host_kwd } ;
t String_t ’String’ lexer classes = { host_kwd } ;
t Boolean_t ’boolean’ lexer classes = { host_kwd } ;
t Class_t ’class’ lexer classes = { host_kwd } ;
t While_t ’while’ lexer classes = { host_kwd } ;

t Id_t /[a-zA-Z][a-zA-Z0-9]*/ submitsTo { host_kwd };

t LCurly_t ’{’ ; t RCurly_t ’}’ ;
t LParen_t ’(’ ; t RParen_t ’)’ ;
t LSquare_t ’[’ ; t RSquare_t ’]’ ;

t Colon_t ’:’ ; t Semi_t ’:’ ;
t Comma_t ’,’ ; t Assign_t ’=’ ;
t Dot_t ’.’ ;

t Star_t ’*’ prec=6, assoc=left;
t Plus_t ’+’ prec=5, assoc=left;
t BitShift_t ’>>’ prec=4, assoc=left;
t GT_t ’>’ prec=3, assoc=none;
t EQ_t ’==’ prec=3, assoc=none;

ignore t LineComment_t /[\/][\/].*/ ;
ignore t SpaceTabNewLine_t /[\ \t\n]+/ ;

-- Productions
Root ::= Class
Class ::= ’class’ Id_t ’{’ ClassMems ’}’
ClassMems ::= ClassMem ClassMems

| ClassMem
ClassMem ::= Type Id_t ’;’ -- field dcl
ClassMem ::= Type Id_t ’(’ Params ’)’ ’{’ Stmts ’}’
Params ::= -- no parameters

| Type Id_t ’,’ Params
| Type Id_t

Stmts ::= -- no statements
| Stmt Stmts

Stmt ::= Type Id_t ’;’ -- local dcl
| Id_t ’=’ Expr ’;’
| ’while’ ’(’ Expr ’)’ Stmt

Type ::= ’int’ | ’Integer’ | ’String’ | ’boolean’
| Id_t
| Id_t ’<’ Type ’>’

Expr ::= Id_t | IntLit_t | StrLit_t | ’(’ Expr ’)’
| Expr ’>’ Expr
| Expr ’>>’ Expr
| Expr ’*’ Expr
| Expr ’+’ Expr
| Id_t ’.’ Id_t ’(’ Expr ’)’

Figure 2. Specification of concrete syntax of Java− host language.

Nonterminals are declared withnt followed by the name of the
nonterminal symbol.start indicates the start nonterminal (Root);
there are also nonterminals for classes (Class), class members and
sequences thereof (ClassMem andClassMems), type expressions
(Type), parameters, statements, and expressions.

Terminals are declared byt, in the same way. By convention,
these names have a “t” suffix, but this is not required; we do
not follow the convention of using uppercase words for terminals
and lower case words for nonterminals. Following the terminal
name is its regular expression. Those of the integer literal termi-
nal IntLit t and the string literal terminalStrLit t are writ-
ten between forward slashes. If the regular expression defines a
fixed string, it can instead be written inside single quotes, such as
’class’ on theClass t keyword terminal. Regular expressions
in single quotes can be used to reference their terminals in produc-
tions, as is done in theClass production and in the prose of this
paper. (If several terminals sharing one fixed-string regular expres-
sion, however, one should refer to each one by its name.)

Following the specifications of the keyword terminals are those
of the identifier terminalId t and the several punctuation termi-
nals. Specifications of operator precedence and associativity are
given on binary operator terminals; these are processed as in tra-
ditional LR parser generators. Finally, whitespace and comments
are specified; theignore modifier indicates that they are thrown
away by the scanner.

Last are shown BNF productions for Java−.

Lexical precedence relation: In traditional approaches, a prece-
dence ordering is placed on all terminal symbolsT so that if the
regular expressions for more than one terminal match the same
prefix of the input string, the one with the highest precedence is
selected. In tools like Lex, this precedence ordering is a total order-
ing, implicitly specified by the textual order in which the terminals
appear in the lexical specification.

In our approach, we cannot base any precedence ordering for
terminals on their textual order in the grammar specification, as the
extensions that contain the terminal specifications are composed
with the host language as an un-ordered set, not an ordered list. Fur-
thermore, many terminals never appear in the same valid lookahead
set and thus do not need precedence orderings to disambiguate. In-
stead, an asymmetric, non-transitive relation≻ is specified, con-
sisting only of the relations explicitly specified by thesubmitsTo
anddominates clauses in the specifications. To simplify the me-
chanics of the explicit specification, each terminal can be a mem-
ber of variouslexical classes, as specified by thelexer classes
clause on terminal declarations. In Figure 2, thehost kwd lexical
class is declared aboveInt t and the keyword terminals are speci-
fied as its members. The identifier terminalId t specifies that it has
lower precedence than all members of this class via thesubmitsTo
{ host kwd } clause. Since this is the only such specification in
this grammar, the relation≻h specifies only thatInt t ≻h Id t,
Integer t ≻h Id t, String t ≻h Id t, Boolean t ≻h Id t,
Class t≻h Id t, andWhile t≻h Id t. This information is used
to prefer keywords to identifiers when scanning strings matching a
keyword’s regular expression.

If the relation≻ specifiest1 ≻ t2 then in all parsing contexts
t1 has precedence overt2. The specification oft1 ≻ t2 effectively
addst1 to all valid lookahead sets containingt2. For any context in
which the set of terminalsts are valid, we will also consider the set
higherPrecTerms(ts) as valid, where

higherPrecTerms(ts) =
[

t∈ts

{t′ ∈ T | t′ ≻ t}.

For example, in a context whereId t is valid, all the appropriate
keyword terminals would also be considered as valid. Thus, even
in contexts whereId t is valid but where a keyword such as

grammar edu:umn:cs:melt:simplejava:exts:tables ;
import edu:umn:cs:melt:simplejava:host ;

nt TableRow, TableRows, TValue, TValues ;

t CondTable_t ’table’ dominates { Id_t } ;
t TrueTV_t ’T’ ;
t FalseTV_t ’F’ ;
t StarTV_t /*/ ;

Expr ::= CondTable_t ’(’ TableRows ’)’
TableRows ::= TableRow ’,’ TableRows | TableRow
TableRow ::= Expr ’:’ TValues
TValues ::= TValue TValues | TValue
TValue ::= TrueTV_t | FalseTV_t | StarTV_t

Figure 3. Specification of concrete syntax of the tables extension.

Class t cannot be part of a syntactically correct program, we need
to scan “class” as the keyword terminal, not as an identifier. This
would happen in processing a syntactically incorrect Java statement
such asclass SELECT;. To generate the appropriate parse error,
“class” is recognized asClass t and not asId t.

Language extension specifications:The extensions specify gram-
mars with no start symbols, in relation to the host language spec-
ification, as is indicated by theimport statement at the top of
each specification. Figure 3 defines the condition tables grammar
CondTables = 〈Tt, NTt, Pt,≻t, H〉 and Figure 4 defines the
SQL grammarSQL = 〈Ts, NTs, Ps,≻s, H〉. Productions in lan-
guage extensions will use host language (fromH) terminals and
nonterminals; also, their precedence relations will include termi-
nals from the host language:≻t ⊆ (Th ∪ Tt) × (Th ∪ Tt) and
≻s ⊆ (Th ∪ Ts) × (Th ∪ Ts). In the tables grammar in Fig-
ure 3 we see that theCondTable t keyword dominatesId t; thus
CondTable t ≻t Id t. The SQL keywords are members of the
sql kwd lexer class; the terminalUsing t dominatesId t but the
other sql kwd terminals do not, since these keywords andId t
are never both valid lookahead, and thus we will never have to rely
on precedence to distinguish between them. In fact, as illustrated
in Figure 1 and described in Section 3.2, there are contexts where
we want to recognize the stringSELECT as an identifierId t and
contexts where we want to recognize it as a SQL keyword.

Grammar composition: The grammar for the composed lan-
guage Java− + SQL+ CondTablesis L = 〈Th ∪ Ts ∪ Tt, NTh ∪
NTs ∪NTt, Ph ∪Ps ∪Pt, S,≻h ∪ ≻s ∪ ≻t〉. This is just the set
union of the components of the grammars.

3. Modified LR parsing algorithm/scanner
interface

Our approach uses a modified LR parsing algorithm and modified
DFA-based scanning algorithm whose parse tables and DFAs are
generated from declarative specifications such as those in Figures 2,
3, and 4. Before describing our modified LR parsing algorithm, we
briefly discuss traditional LR parsing.

3.1 Traditional LR parsing

In traditional LR parsing [9, 1] the input grammar is used to gener-
ate aparse tablethat drives the parsing algorithm. While parsing,
the algorithm maintains aparse stack, consisting of pairs ofparse
statesand concrete syntax trees (CSTs). The traditional algorithm
is the same as that of Figure 5 if one removes lines 5–6 and lines
10–23 and adds a call to a traditional disjoint scanner after line 29.

grammar edu:umn:cs:melt:simplejava:exts:sql ;
import edu:umn:cs:melt:simplejava:host ;

-- embedded SQL queries
nt SQL, SQL_Expr, SQL_Ids ;
TableRow, TableRows, TValue, TValues ;

lexer class sql_kwd ;
t Using_t ’using’ lexer classes = { sql_kwd },

dominates { Id_t } ;
t Query_t ’query’ lexer classes = { sql_kwd } ;
t Select_t ’SELECT’ lexer classes = { sql_kwd } ;
t Where_t ’WHERE’ lexer classes = { sql_kwd } ;
t From_t ’FROM’ lexer classes = { sql_kwd } ;
t And_t ’AND’ lexer classes = { sql_kwd } ,

prec = 3, assoc = none ;
t SQL_EQ_t ’=’ prec = 4, assoc = none ;
t SQL_Id_t /[a-zA-Z][a-zA-Z0-9]*/

submitsTo { host_kwd, sql_kwd } ;

Expr ::= ’using’ Id_t ’query’ ’{’ SQL ’}’
SQL ::= ’SELECT’ SQL_Ids ’FROM’ SQL_Ids

’WHERE’ SQL_Expr
SQL_Ids ::= SQL_Id_t ’,’ SQL_Ids | SQL_Id_t
SQL_Expr ::= SQL_Id_t

| SQL_Id_t ’.’ SQL_Id_t
| SQL_Expr SQL_EQ_t SQL_Expr
| SQL_Expr And_t SQL_Expr
| SQL_Expr GTE_t SQL_Expr

-- embedded connection/table schema
nt TableDcl, TableDcls, FieldDcls, FieldDcl ;

t Conn_t ’connection’ lexer classes = { sql_kwd },
dominates { Id_t } ;

t With_t ’with’ lexer classes = { sql_kwd };
t Table_t ’table’ lexer classes = { sql_kwd };
t SQL_Type_t /(VARCHAR)|(INTEGER)/

lexer classes = { sql_kwd };

Stmt ::= ’connection’ Id_t StrLit_t ’with’
TableDcls ’;’

TableDcls ::= TableDcl ’,’ TableDcls | TableDcl
TableDcl ::= Table_t SQL_Id_t ’[’ FieldDcls ’]’
FieldDcls ::= FieldDcl ’,’ FieldDcls | FieldDcl
FieldDcl ::= SQL_Id_t SQL_Type_t

Figure 4. Specification of concrete syntax of the SQL extension.

The parse table is indexed by parse states and grammar symbols.
Its entries are calledparse actionsand have the formerror , accept ,
shift(ps ∈ ParseState), or reduce(p ∈ P). Here we represent
the parse table as a mappingtable : (ParseState, T ∪ NT) 7→
Action whereParseStates are typically represented as integers and
correspond to states in the LR DFA [9, 1].

We assume a global immutable input stringinput; the parser is
a function that returns theCST corresponding toinput or exits
with a parse error. We define atoken, denoted by typeTk, as
a tuple containing a terminal, a lexeme matching that terminal,
and location information such as a line or column number. In our
rendering of the algorithm we define the parse stack as a stack
of ParseState/CST pairs, with associated operationspeek, pop,
push, andmultipop. To access theParseState and CST inside a
stack element, one uses the functionsstate andnode, respectively.

The execution of the traditional LR algorithm is directed by the
parse table and parse stack. At each cycle, the parser calls to the
scanner for the next token in the input, then called thelookahead
token. The parser then looks at the top of the stack to get the present
parse state. Using this state and the lookahead token as indices, it
retrieves a parse action from the parse table, one ofshift, reduce,
acceptor error. A shift action constructs a terminal CST node that
is pushed onto the parse stack along with the shift action’s parse
state. The parser will also move the input past the lookahead token.
A reduce action constructs a new CST using the action’s production
and the appropriate number of trees popped from the stack for
children. It then pushes this tree onto the stack and changes the
parser state to the state indicated by the goto action in the parse
table. It then pushes the new CST and parse state onto the stack.
An accept action stops the parser when parsing is complete. An
error action stops the parser when there is a syntax error,i.e., when
the lookahead token has an error action in the table.

3.2 Modified LR parsing

We have modified the LR parsing algorithm in order to utilize
context-aware scanning. We first define the two innovations around
which all of our modifications to the traditional LR algorithm
center:valid lookaheadand the new parser-scanner interface.

Valid lookahead sets: A valid lookahead set is defined for each
parse stateps as the set of terminals that have non-error parse ac-
tions associated with them:validLA ={t ∈ T | table(ps, t) 6=
Error}. For example, in the initial state of a full Java parser,
the valid lookahead would contain terminals such aspackage,
import, public, andclass because those can appear at the be-
ginning of a Java file. It wouldnot contain terminals such asfor,
because for-loops do not occur at the beginning of Java files.

Parser’s interface to scanner: In the traditional LR algorithm,
the type of the scanner function isnextToken : int → 〈Tk, int〉.
In context-aware scanning the interface is slightly different; the
type of the scanner function isnextToken : 〈P(T), int〉 →
〈P(Tk), int〉. Both functions take the position from which to scan,
but the latter also takes the set of valid lookahead terminals for
the current parse state; both return the new position, while the
traditional function returns exactly one token and the new function
returns a set of tokens. If the returned token set is empty, then a
lexical error has occurred. If its size is 1, then no error has occurred;
if it is more than 1, a lexical ambiguity has occurred. The important
invariant is that if〈ts′, 〉 = nextToken(ts,) thents′ ⊆ ts —
the scanner only returns tokens in the set of valid lookahead.

Section 5 presents an analysis that is performed on the parse ta-
ble and scanner DFA to ensure determinism —i.e., that the scanner
never returns more than one token, or if it does, adisambiguation
functionexists to select a single token from the set. Disambiguation
functions (see section 5.2.1) are rarely required.

3.2.1 Modified LR parsing algorithm

Figure 5 contains the pseudo-code of our modified LR parsing al-
gorithm. Lines 1–7: (1) initialize the parser start state, a flagdone,
and the positionpos; (2) declare variables for the new position
(np), parse state (ps), new parse state (ps ′), current lookahead to-
ken (tk), valid lookahead terminals set, and tokens returned from
the scanner; and (3) push a starting state onto the parse stack.

Entering the loop, line 9 retrieves the parse state from the
top of the stack and stores it inps. Line 10 retrieves from the
parse table the valid lookahead for stateps. Consider the exam-
ple “List<List<Integer>>” from section 1 in which the parser
has just reduced “Integer” to Type in the previous loop itera-
tion and input positionpos indicates that “>>” is to be processed.
validLA = {’>’} since the current parse state is the one that con-

function parse() returns CST
1. int startState = parser start state
2. boolean done = false
3. int pos = 0 , np , ps, ps ′

4. Tk tk // current lookahead token
5. Set(T) validLA
6. Set(Tk) lookAhead
7. push(〈startState, 〉)
8. while ¬done do
9. ps = state(peek()) // copy parse state on top of parse stack
10. validLA ={t ∈ T | table(ps, t) 6= Error}
11. validLA = validLA ∪ higherPrecTerms(validLA)
12. 〈lookAhead ,np〉 = nextToken(validLA, pos)
13. if |lookAhead | = 0 then
14. // generate parse error
15. exit()
16. if |lookAhead | > 1 then
17. // possible lexical ambiguity
18. lookAhead = applyDisambiguationFunctions(lookAhead)
19. if |lookAhead | > 1 then
20. // lexical ambiguity, unreachable for deterministic cases
21. exit()
22. // |lookAhead| = 1
23. tk = first(lookAhead)
24. action = table(ps, tk)
25. switch action
26. case shift(ps ′) :
27. // perform semantic actions fortk
28. push(〈ps ′, tk〉)
29. pos = np
30. case reduce(p : A ::= α) :
31. children = map(node(multipop(|α|)))
32. tree = p(children)
33. // perform semantic actions forp
34. ps ′ = table(ps,A)
35. push(〈ps ′, tree〉)
36. case accept :
37. if lookAhead = EOF then done = true
38. else // report error and exit
39. case error :
40. // report error and exit
41. end while
42. return node(pop())

Figure 5. Modified parsing algorithm.

tains only the LR itemType ::= Id t ’<’ Type • ’>’. Line
11 locates any terminals of higher precedence to what is already
in the valid lookahead set, and places them therein. The terminal
’>’ is not used in the lexical precedence relation≻, and therefore
higherPrecTerms({’>’}) = ∅. Line 12 calls the scanner on the
present position, passing it the valid lookahead set. In this example
the scanner locates a single greater-than sign and return it as the
longest match. The input at that point also matchesBitShift t,
but sinceBitShift t /∈ validLA, the scanner does not match it.

The three if-statements occupying lines 13–21 check if the
match set returned by the scanner is comprised of exactly one ele-
ment, and if not, attempt to make it so by applying the appropriate
disambiguation function. If none exists an error is raised. In this
example, there is only one match and line 23 is reached without
incident; it extracts the single element oflookAhead into a token
variable tk. Line 24 retrieves an action from the parse table. In
our example, parse table cell(ps, ’>’) indicates a shift action. The
switch-statement occupying lines 25–40 provides cases for every

kind of parse action. The code here is the same as that used in a
traditional LR algorithm, as described above.

3.2.2 Use of precedence relation≻

Consider parsing the program in Figure 1 when the parser is at
the beginning of the line “int SELECT;” and the parser is pre-
pared to shiftInt t for “int”. At line 10, the parser retrieves
validLA, here it is the set of terminals that can occur at the
beginning of a statement in a method. This set contains exactly
Id t, ’int’, ’Integer’, ’String’, ’boolean’, ’while’, and
the SQL extension terminal’connection’. Line 11 adds new
terminals to this set based on the precedence relation≻. In the
host grammar,Id t submits to’int’, ’Integer’, ’String’,
’boolean’, ’class’, and’while’. In the condition-tables ex-
tension,’table’ dominatesId t. In the SQL extension,’using’
dominatesId t. The three that were not previously contained in
validLA (’class’, ’table’, and’using’) are then added to it.
This ensures that in all parsing contexts the keywords have prece-
dence over the identifier terminal. In the Java− statement “class
SELECT;” discussed above, the new additions allow the terminal
Class t to match “class” and cause the desired parse error (since
Class t has no parse action in that state). In the case of “int
SELECT;”, the scanner returns theInt t token. Since there are no
lexical ambiguities the algorithm then branches to line 26 to shift
the shift action. The parser pushes a new element on the stack con-
taining the new parse state and theInt t token.

The lexical precedence relation≻ is not transitive because we
need to avoid specifying an implicit relation between two terminal
symbols when setting one to dominate a certain host terminal and
the other to submit to it. In practice, the lack of transitivity has not
been a problem, and with the use of lexer classes, specifying these
implicit relations is quite simple.

In Section 6.2.2 we show how this same effect can be achieved
though a modification to the scanner DFA that takes place at
scanner-generation time instead of at parse time.

3.2.3 Example applications to parsing challenges

Here we illustrate how the parsing challenges enumerated in Sec-
tion 1 are handled by context-aware scanning and parsing.

Context-based preference of keywords:Consider parsing “int
SELECT;” at the point where the example in Section 3.2.2 has
finished and the parser has just shifted’int’ and is now ready
to reduce it into aType CST. At line 10, the algorithm com-
putes validLA. This consists of one element,Id t. At line
11, the keywords with higher precedence (’int’, ’Integer’,
’String’, ’boolean’, ’while’, ’class’, ’table’, ’using’,
and’connection’) are added tovalidLA. At line 12, the parser
calls the scanner; the scanner readsSELECT and matches it as an
identifier since’SELECT’ /∈ validLA. Thus, this approach can
selectively reserve keywords based on the parsing context. In a
traditional scanner, the SQL keyword’SELECT’ would have been
matched. Execution then branches to line 30 to perform the reduc-
tion using the productionType ::= ’int’. On the next iteration
of the loop, the same situation occurs but the a shift action is taken
to pushId t onto the stack.

When processing has progressed to the SQL query and passed
the “{” in the line “{ SELECT age ...,” validLA contains only
the keyword terminal’SELECT’ and notId t or SQL Id t. Thus
“SELECT” is here recognized as a keyword disambiguated by
context. Note that the SQL extension’s inner productions do not
referenceId t but SQL Id t, which has lower precedence than
(submitsTo) all host language and SQL (sql kwd) keywords.
Thus, the string “SELECT” will not be recognized as an identifier in
the context of an SQL query and is disambiguated by precedence.

Context-based keyword disambiguation:The string “table”
will be recognized as the SQL terminalTable t in the context of
an SQL connection construct but as the tables extension terminal
CondTable t in a Java− expression. These terminals are disam-
biguated by context and although they share a regular expression,
they need not be related by the lexical precedence relation.

Operator precedence and associativity:A similar disambigua-
tion by context happens for the host language terminalAssign t
and the SQL terminalSQL EQ t (both with the same regular expres-
sion’=’) sinceAssign t is not in the valid lookahead in the con-
text of SQL queries andSQL EQ t is not in the valid lookahead in
the context of Java. These terminals have different operator prece-
dence and associativity settings and are handled in the traditional
manner by the LR parsing engine. Context-aware scanning allows
for finer distinctions in specifying operator precedence and associa-
tivity because it allows for the same lexeme (in this case “=”) to be
represented by two different terminals and therefore have different
operator precedence and associativity.

4. Context-aware scanning
In this section we describe context-aware scanning, which is sim-
ilar to traditional scanning techniques in that it is based on regu-
lar expressions for specification and deterministic finite automata
(DFAs) for implementation. In both approaches, terminals have
regular expressions associated with them, indicated by the mapping
regex : T 7→ Regex, and a DFA is constructed as follows [1]: (1)
create a nondeterministic finite automaton (NFA) from each regu-
lar expressionregex(t ∈ T); (2) create a composite NFA from
these constituent NFAs by introducing a new start state and adding
epsilon transitions from that state to the start states of each con-
stituent; (3) convert the NFA to a DFA.

The DFA has the form〈Σ, Q, δ : Q×Σ → Q, start ∈ Q, acc :
Q 7→ P(T), poss : Q 7→ P(T)〉 whereΣ is the alphabet,Q is the
finite set of states (among which is a distinct error stateerrorQ),
start is the start state,acc indicates which terminals are accepted
in each state of the DFA (acc(errorQ) = ∅), and:

• δ is the deterministic transition function. We augmentδ such
that for eachq ∈ Q whereδ(q, s ∈ Σ) originally had no value,
δ(q, s ∈ Σ) = errorQ. The functionδ∗ : Q × Σ∗ → Q
is the natural extension ofδ to sequences of symbols inΣ
such thatδ∗(q, x) = δ(q, x) wherex ∈ Σ andδ∗(q, xv) =
δ∗(δ(q, x), v).

• poss, a novel mapping in our approach, indicates what termi-
nals may be accepted inreachableDFA states;i.e., poss(q) =
{t ∈ T |∃w ∈ Σ∗. t ∈ acc(δ∗(q, w))}. Thus, acc(q) ⊆
poss(q) for any stateq. Note that∀c ∈ Σ . (δ(s1, c) = s2 ⇒
poss(s2) ⊆ poss(s1)) — possible sets shrink monotonically
along transition chains. Thus,poss(errorQ) = ∅.

The scanner functionnextTokenis given in Figure 6; it takes
as input the valid lookahead set (validLA) and the position from
which to scan (whence). This function first consumes whitespace.
WhiteSpace = {ws}, wherews is a tool-generated terminal
whose regular expression is the Kleene star (∗) of the disjunction
of the regular expressions of all terminals markedignore. The
nextTokenfunction then scans for the tokens in the valid lookahead
set from the new position. Note thatnextTokenand scan have
identical type signatures.

Figure 7 contains the code for the context-aware scanner that
takes the valid lookahead terminal set as input. The terminal set
validPosscontains terminals that may possibly match after reading
pos − whence characters of the input; it is computed for each
step through the DFA by intersecting the current state’s possible set

function nextToken(Set(T) validLA, int whence)
returns 〈Set (Tk), int 〉
1. 〈 ,np〉 = scan(WhiteSpace,whence)
2. return scan(validLA,np)

Figure 6. ThenextTokenfunction called by the parser.

poss(ss) and the valid lookahead setvalidLA. The loop terminates
when it is not possible to match any terminals by reading further.

In the loop, we first check if a match is possible in the current
statess by checking ifacc(ss) ∩ validLA 6= ∅. If so, we save
the current state and position aslastMatch and lastPos. Next,
the transition functionδ is called on the current character,pos is
incremented, andvalidPossis computed for the new state. This
continues until a state with no possible matches is entered.

After the loop, the set of matches is computed by intersecting
validLA with the accept set oflastMatch. Next, we filter from
matchesall terminals that have lower precedence than some other
terminal inmatches. (Note that≻ is irreflexive sot′ ≻ t ⇒ t′ 6= t.)
The matched lexeme is used to build tokens returned to the parser.

To further understand this algorithm, consider some examples.
First, in the example “List<List<Integer>>”, after recognizing
and shifting the token for “Integer” the scanner is called with
the valid lookahead set{GT t}. In the first iteration, the first>
is read andvalidPoss is set to{GT t}. In the second iteration
acc(ss) ∩ validLA 6= ∅ and the match information for “>” is
stored. The second> is consumed and sinceGT t does not match
any string of more than one charactervalidPoss is set to∅ and
the loop exits. The scan function subordinates the disambiguation
principle of maximal munch to the principle of disambiguation by
context; it will return a shorter valid match instead of a longer
invalid match.

In scanningint SELECT; we showed that the valid lookahead
set would contain the identifier terminalId t as well as’int’ and
several other keyword terminals. In this example, the scan function
would consume “int” and recordlastMatchas the state whose
accept set isId t and’int’, then consume a space, which sets
ss to errorQ and causes the loop to exit. Thus, in line 14, the
≻ relation is used to removeId t from matches, since’int’ ≻
Id t. In Section 6.2.2 we will see how this precedence information
can be used during scanner generation to partition the accept sets
into restricted accept sets andreject sets, removing the need for
scan-time match filtering of this kind.

Another interesting case occurs when one keyword is the prefix
of another. Consider a Perl-Python hybrid in which bothfor and
foreach are loop keywords followed directly by identifiers. Thus,
in scanning “foreach x” when both’for’ and’foreach’ are
in the valid lookahead, maximal munch dictates that’foreach’
be recognized. There is no context in which only’for’ is in
the valid lookahead. But if there were, and the string “foreach”
were scanned,scan()would scan for onlyfor, and match it. It
would then scan for an identifier and match “each,” resulting in
“foreach” having two separate meanings based on context. This
seems odd, but it is identical to the example of scanning “>>”
and returning 1 or 2 tokens depending on the context. In Section 6
we suggest a technique for requiring whitespace between terminals
that addresses this issue.

5. Syntactic and lexical determinism
5.1 Syntactic determinism

The LR parsing algorithms (ours and the traditional one) guaran-
tee syntactic determinism as they will not run on a parse table with
shift-reduce or reduce-reduce conflicts. Conflicts are reported and

function scan(Set(T) validLA, int whence)
returns 〈Set (Tk), int 〉
1. int ss = DFA start state
2. int pos = whence
3. Set(T) validPoss = poss(ss) ∩ validLA
4. int lastMatch = errorQ
5. while validPoss 6= ∅ do
6. if acc(ss) ∩ validLA 6= ∅
7. then lastMatch = ss; lastPos = pos;
8. char ch = input[pos]
9. ss = δ(ss, ch)
10. pos = pos + 1
11. validPoss = poss(ss) ∩ validLA
12. end while
13. Set(T) matches = acc(lastMatch) ∩ validLA
14. matches = {t ∈ matches | ¬∃t′ ∈ matches.t′ ≻ t}
15. string lexeme = getRange(input ,whence, lastPos − 1)
16. return {〈t, lexeme〉|t ∈ matches}

Figure 7. The modified scanning function called bynextToken.

resolved in the same manner in both approaches. Our approach dif-
fers from the traditional one in that we can produce more meaning-
ful lexical tokens and hence parse a larger class of languages.

5.2 Lexical determinism

A scanner exhibits lexical determinism if for any input, it will
match 0 or 1 terminals. We have developed a simple analysis that
tests whether or not lexical ambiguities exist in a lexical specifi-
cation with respect to a given parser. Since the valid lookahead set
plays a critical role in this analysis, lexical determinism can only be
determined by examining both the lexical and context free syntax.
In our algorithms, any set of tokens returned to the parser is the in-
tersection of a valid lookahead set (validLA) and the accept set of
a DFA-state (acc(ss)) from which is removed any terminal whose
lexical precedence is lower than that of some other terminal in that
set. Such a set with cardinality greater than 1 is a lexical ambiguity.
Thus, the lexical syntax is free of lexical ambiguities if

∀ sp ∈ ParseState .
∀ ss ∈ Q .

| {t ∈ validLA(sp) ∩ acc(ss) |
¬∃ t′ ∈ validLA(sp) ∩ acc(ss) . t′ ≻ t} | ≤ 1.

5.2.1 Disambiguation functions

In our specifications of Java 1.4 and the various extensions there
are no lexical ambiguities [15]. But in our specifications for ANSI
C and AspectJ there are a few lexical ambiguities. These can be
resolved withdisambiguation functions— a construct used to
resolve a particular, otherwise unresolved, lexical ambiguity.

If the lexical determinism analysis finds a lexical ambiguity
it will return the setA ⊂ T of terminals that has cardinality
greater than 1. To establish lexical determinism, a disambiguation
function is then used in order to resolveA by selecting a single
token to return. A disambiguation function is a pair〈A ⊆ T ,
f : Σ⋆ → Tk〉. A is a set of terminals for a particular ambiguity;
f is a function that takes the matched lexeme (and, in practice, line
and column information) and returns a single token corresponding
to a terminal inA. Any A with a disambiguation function does
not need to be reported as a lexical ambiguity. Line 18 of the
modified LR parsing algorithm in Figure 5 applies the relevant
disambiguation function if the scanner returns more than 1 token.
Since we can statically test that a disambiguation function exists
for each ambiguity setA, we can be sure that lines 20 and 21

are unreachable and thus lines 19–21 can be safely removed from
parsing algorithm generated for a language with no unresolved
lexical ambiguities.

6. Discussion
6.1 Copper: a context-aware parser/scanner-generator tool

We have incorporated these algorithms in the form of a new parser
and scanner generator tool, named Copper. Input to Copper speci-
fies both lexical and context-free syntax in a manner similar to that
shown in Section 2. Copper uses traditional algorithms for gener-
ating LALR(1) parse tables. It also performs the checks for deter-
minism described above so that when the parser and scanner are
generated, any conflicts or lexical ambiguities are reported. Aug-
menting the new algorithms are several features to handle “fringe
cases” where a purely declarative paradigm may not suffice; among
these areparser attributes. We have also worked to adapt error re-
porting to the new algorithms.

Parser attributes: Parser attributes are an abstracted version of
the custom variables that can be found in any practical parser gener-
ator. In Yacc-like tools these are global variables updated by assign-
ment statements in the semantic actions associated with the parse
rules. In implementations for purely functional languages these oc-
cur in so called monadic parsers in which the values are threaded
through the parsing process using a monad [10, Section 2.5]. Our
approach is similar to these with the small difference being that they
are declared directly as part of the syntax specifications. Parser at-
tributes can be referenced as variables inside semantic actions (car-
ried out at shift and reduce time) and in disambiguation functions.

Implementation of disambiguation functions: In addition to the
set of tokens given to a disambiguation function, these functions
can access parser attributes. This is useful is in the specification
of ANSI C. Typenames and identifiers in C share the same regu-
lar expression, and they may often occur in the same context. It is
not possible to use just one terminal for both cases for the standard
grammar as this introduces conflicts to the grammar. This lexical
ambiguity is usually resolved by maintaining a list of typenames
created bytypedef statements, which is checked whenever such
an ambiguity arises. In this case one would declare a disambigua-
tion function forA = {typename, identifier} that returns one
or the other based on the content of a parser attribute containing the
typename list.

Error reporting: In a traditional scanner, if the input contains a
valid token that is out of place (such as the “class SELECT;” ex-
ample above) the parser will print out “Unexpected tokenclass.”
With our algorithms such a message is impossible to produce: the
scanner is blind to everything outside the valid lookahead set, and
if nothing matches, it simply returns an empty match set. In such a
case the only thing the parser has to display is the valid lookahead
set, which is not very descriptive in that situation. A better thing
to do is to run the scanner with a valid lookahead set containing
all the grammar’s terminals. The scanner will then return a (possi-
bly ambiguous) match, which can be displayed along with the valid
lookahead set.

Other features: We are also interested in a modular test that
can be performed when a language extension designer specifies
the concrete syntax of his or her extension, ensuring that when
a programmer combines several language extensions that all pass
this modular test no conflicts will occur in the parser and no lexical
ambiguities occur in the scanner of the extended language. We have
developed a prototype of such a test [15, 16] that is based on the
principle of separating the parser DFA into partitions associated
with precisely one grammar, either the host language grammar or
an extension grammar.

Another enhancement to our approach allows different layout
(whitespace and comments) for embedded languages. For example,
in the tables extension we may like to use the newline instead of
the comma to separate table rows. Layout can be specified on a
per-production basis by allowing the explicit specification of the
layout that is to appear between symbols on the right-hand side of
a production. This can be used to address the situation with the
’for’ and’foreach’ keywords described at the end of Section 4
by adding explicit whitespace between the’for’ and identifier
terminals on the for-loop production.

6.2 Performance

Our parsing algorithm, like all deterministic-LR algorithms, runs
in linear time on the number of terminals shifted. Valid lookahead
sets can be implemented to be retrieved in constant time.

6.2.1 Rescanning after reduce actions

Traditionally, the retrieval of each token of lookahead has been
treated as taking constant time, since it is possible for the scanner
to run as a pre-process, sending a ready-made token stream to
the parser. Our integrated algorithm, on the other hand, requires
a character string for input, and running the scanner at the same
position in the string may produce a different match based on the
valid lookahead set.

This poses a problem with chains of reduce actions. Naı̈vely,
one would assume that after every reduce action, the algorithm
would have to run the scanner again at the same position. However,
there exists a property of lookahead sets that is very useful here:
the lookahead set on an LALR(1) item is all symbols that may
follow it. Thus, in all cases, the valid lookahead set facing the parser
after a reduce action will be a (not necessarily proper) subset of
the previous valid lookahead set. Furthermore, this subset will still
contain the terminal that was matched on the previous scan.

Therefore, by memoizing the previous scan result to avoid a
rescan, all rescanning can be eliminated except in cases where dy-
namic post-process disambiguation techniques such as disambigua-
tion functions are used. Here it is necessary to re-scan, for two rea-
sons: (1) while the terminal selected by the disambiguation func-
tion is still in the valid lookahead set, all members of the group
may not be, meaning that the same disambiguation function would
not be used on a rescan; (2) if all group members are still present,
the reduce action may have altered parser attributes, causing the old
disambiguation function to produce a different result.

Clearly, careless use of disambiguation functions could result
in a more inefficient scan. However, in practical tests with a C
grammar we have found that each token for which a disambiguation
function was used is scanned an average of approximately 1.1
times, the maximum average for a file being 1.4.

6.2.2 Processing lexical precedence statically

Lexical disambiguation based on the lexical precedence relation≻
shown in the parse function at line 11 and in thescanfunction in
line 14 is done dynamically,i.e., at parse and scan time. However,
it can be done statically, at parser and scanner generation time, thus
greatly increasing efficiency. Copper uses this optimization.

After the scanner DFA states have been generated and the states
labeled with their accept setsacc and possible setsposs have been
computed, we add a new mappingrej : Q 7→ P(T) that labels
each state with a set of terminals called itsreject set. We then
move lower precedence terminals from a state’s accept set to its
reject set. Letlower(ts) = {t ∈ ts|∃t′ ∈ ts . t′ ≻ t }; this
represents the terminals ints that have a lexical precedence that
is lower than some other terminal ints. The reject setrej(ss) is
defined aslower(acc(ss)). The accept set is updated to remove
from acc(ss) those elements inrej(ss).

Theparsefunction in Figure 5 is modified by removing line 11
and thescanfunction of Figure 7 is modified by removing line 14
and adding the following statement after line 7:

elseif rej(ss) ∩ validLA 6= ∅ then
lastMatch = errorQ

This is necessary in order to “drop” any matches of lesser length.
For example, consider scanning the string “while (...” in Java−

when the valid lookahead set contains only the identifier terminal
Id t. This should result in a parse error since’while’ ≻ Id t.
On the fifth iteration of the loop, line 7 will setlastMatch to a
state whose accept set containsId t andpos such that the lexeme
would be “whil”. Line 9 setsss to a state whose accept set contains
’while’ and whose reject set containsId t. On the next iteration,
the new code above is utilized since its condition evaluates totrue.
We setlastMatchto errorQ to remove the previous match ofId t
for lexeme’whil’. Thus, when the loop exits, no matches are
found and the scanner returns an empty token set, triggering the
parse error.

The effect is to remove code that computes sets of terminals
based on the≻ relation and replace it with code that computes sets
of terminals based on set intersection.

This does not increase the overall complexity ofscan, but it is
necessary here to discuss scanner complexity. Although the scanner
runs in linear time strictly with respect to the size of the input
string, it should also be near constant-time with respect to the
size of thegrammar. Unlike with a traditional scanner, it is not
strictly a constant-time operation with respect to grammar size
to determine when the scan should stop, or to determine what to
match in a given state. All superconstant operations, however, are
based on intersections of sets of terminals; since the number of
terminals is known at scanner generation time, efficient bit-vector
implementations of these set operations can be generated.

6.3 Experience

We have used Silver and Copper to implement a number of lan-
guages and language extensions. Our ableJ framework [15] de-
fines Java 1.4 and several language extensions that are parsed and
scanned using our approach. One extension adds the constructs
from AspectJ to provide a declarative and deterministic specifica-
tion of that language. The disambiguation of lexical syntax is ac-
complished primarily by context and the precedence relation≻;
only five disambiguation functions are needed. All five contain the
Java identifier terminal and a conflicting AspectJ keyword, and sim-
ply return the keyword. These AspectJ keywords are not specified
to have lexical precedence over the Java identifiers because they can
be used as Java identifiers in Java parts of an AspectJ program. We
have also built parsers and scanners for ANSI C and Promela, the
input language to the SPIN model checker. Promela incorporates
embedded C code; our specification of Promela simply imports the
ANSI C grammar to enable this. The context-aware scanning re-
solves all lexical ambiguities except for three dealing with com-
ments, which are resolved by lexical precedence specifications.

It is conceivable that to specify the lexical precedence relation
≻ requires an understanding of LR parsing and the parse table for
the grammar being defined. However, this is not the case, as the
lexical precedence relation specifies a precedence forall contexts
(parse states). For example, specifying that a keyword takes prece-
dence over an identifier does not require any detailed knowledge of
the algorithm or the parse table. In the SQL extension, we intro-
ducedSQL Id t with the same regular expression asId t from the
host language instead of usingId t in SQL expressions. This is be-
cause SQL keywords have lexical precedence over identifiers in the
SQL constructs but not in Java constructs. To know to do one must
understand that lexical precedence occurs in all contexts, but one
need not understand the details of the algorithm or parse table. In

our experience, context-aware scanning prevents most lexical am-
biguities and resolving the remainder with precedence relations or
disambiguation functions is easier than modifying the grammar to
resolve conflicts in the LR parse table, which does require an un-
derstanding of parse table construction.

7. Related Work
There is a lot of research on parsing and scanning techniques and
we will not attempt to discuss them all. Instead we describe some
techniques that are also applicable to extensible languages and are
either closely related to ours, or have specifications that can be
easily composed to create a deterministic parser.

GLR: GLR (generalized-LR) parsing nondeterministically takes
all actions when encountering a parse conflict; hence GLR can even
parse ambiguous grammars. GLR has been greatly improved re-
cently. Johnstoneet al. [8] have taken its runtime down from expo-
nential to cubic. Wagner and Graham [18] have shown empirically
that most ambiguity occurs near the bottom of parse trees and that
on practical languages the amount of time lost is very low. McPeak
and Necula [11] have shown that GLR runs deterministically 70%
of the time and capitalized on that fact in their optimized Elkhound
system. Thus speed is not a primary factor for avoiding GLR.

An advantage of a nondeterministic system is that the disam-
biguation of C typenames and identifiers can be deferred to the se-
mantic analysis phase [18]. However, despite being robust, GLR
algorithms cannot guarantee determinism on grammars generating
conflicting parse tables; ambiguities must be located by a mixture
of debugging, intense empirical testing, and human intuition.

Visser has developed a novel system of parsing based upon the
GLR engine. [12, 17] He turns nondeterminism to his advantage by
eliminating the scanner and using character-level grammars, elimi-
nating the scanner/parser dichotomy. Deterministic character-level
grammars are nearly nonexistent; not so much in the nondetermin-
istic system, which allows for unlimited lookahead capability as
well as tolerance of ambiguity.

Adapting lexical syntax to the context free model requires some
new footwork, as certain convenient features of lexical DFAs are
not present to be exploited; they are replaced with “disambiguation
filters” [12]. These includefollow restrictionsto replace maximal
munch (e.g., a number cannot be directly followed by a digit) and
reject productionsto replace the preference for keywords speci-
fied by lexical precedence. Operator precedence and associativity
are still present, with the traditional effects. However, it still makes
no guarantee of determinism, being based upon the GLR engine.
Although this may be reasonable in some cases, for building ex-
tensible languages we prefer a guarantee of determinism since lan-
guages may be composed at the direction of the programmer, not a
language expert who can resolve syntactic or lexical ambiguities.

XGLR [3] extends GLR to allow a different scanner state (e.g.
input position) to be associated with each parse thread and thus
supports lexically ambiguous input. As with scannerless GLR, the
XGLR engine uses parser context to choose (disambiguate) the cor-
rect scan or tree at run time and provides no determinism analysis.

It is worth noting that context-aware scanning can also be used
with GLR parsing algorithms. In fact, an early prototype implemen-
tation of Copper did just that. But since the LALR(1) version can
handle a wide class of languages that includes the language exten-
sions we have developed and because it provides the determinism
analysis we seek, Copper does not use GLR.

Schrödinger’s Token: Another approach to this problem is the
“Schrödinger’s token.” Aycock and Horspool [2] present non-
reserved keywords as a hurdle for traditional parsers. For example,
in PL/I it is not known at scan-time whether a token such asIF
is a keyword or identifier. The “Schrödinger’s token” is a token

representing a lexical ambiguity; it may occur alone, representing
an ambiguity on a particular lexeme, or in a sequence, represent-
ing a more profound ambiguity. An individual Schrödinger’s token
consists of more than one numbered terminal/lexeme pairs. The
terminal may be from the grammar’s terminal set or it may be
a “null” terminal, in which case its corresponding lexeme is the
empty string. The “null” tokens, which the parser ignores, are used
as padding in an ambiguous scan where one interpretation has more
tokens than the other, such as in the case where “>>” can be inter-
preted in C++ as a shift-right operator or two closing brackets.

Although Aycock and Horspool’s system mandates a conflict-
free parse table, the Schrödinger’s tokens embody lexical ambigu-
ity. When used by the parser as lookahead, they represent several
parse actions; the parsing algorithm must take these concurrently,
requiring a GLR parser to implement. Although this causes a mini-
mal amount of ambiguity, there is, yet again, no guarantee of deter-
minism. Also, in this system significant effort must be expended in
order to pull off the nondeterministic scan. In the case where lexical
boundaries are unclear, such as their example of the C++ templates,
the addition of the “null” tokens must be carefully orchestrated.

PEGs: Another kind of scannerless parser is the novelpackrat
parser, which is used forparsing expression grammars (PEGs).
PEGs are deterministic by definition: there is exactly one produc-
tion for each nonterminal. Productions are written in an EBNF-like
format, with the only “branching” mechanism being an “ordered
choice” written as “|” [4, 6]. All constructs in PEGs are also greedy
[6]. Being completely deterministic, they are closed under compo-
sition. Grimm [6] has written a packrat parser generator known as
Rats!specifically for use with extensible languages.

As well as being closed under composition, Grimm’s system is
scannerless and supports non-declarative specifications for fringe
cases such as the C typename/identifier ambiguity. However, PEGs
come with drawbacks: (1) Packrat parsers are character-level back-
tracking LL(1) parsers, and while they run in linear time, like any
LL(1) parser they are unable to parse any left-recursive grammar
without special modifications; (2) a context-free grammar exten-
sion connects itself to the host by inserting new productions; ana-
logically a PEG extension must connect itself by inserting new “or-
dered choices.” But our extensions are intended to be insensitive
to the order of addition since they are added as un-ordered sets
of extensions to the host language, not ordered lists. The “ordered
choices” in PEGs do not support this.

8. Conclusion
We have presented deterministic parsing and scanning algorithms
in which the scanner uses the parse state to disambiguate lexical
syntax. This approach can deterministically parse and scan a class
of languages that is strictly larger than what is possible with tradi-
tional LR parsers and disjoint scanners. The principle is that when
the scanner can be more discriminating in the tokens that it returns
it can help the parser to recognize a wider class of languages. Since
the parse state is used by the scanner to be more discriminating,
there is an effective cooperation between them.

Silver, Copper, and the language specifications shown in this
paper are freely available on the Internet atwww.cs.umn.edu.

Aho, Sethi, and Ullman [1, page 84-85] and Aycock and Hor-
spool [2] mention several reasons why it is best to separate the
parser and scanner into disjoint operations. We agree with them
that a disjoint parser and scanner should be used for languages in
which this is possible and a clean specification of the context-free
and lexical syntax can be given. However, there are several lan-
guages for which this is not possible. We feel that the interaction
between the parser and scanner as presented here has benefits that
outweigh the drawback of tying them together.

Acknowledgments
We thank Lijesh Krishnan, Jimin Gao, Derek Bodin, and Yogesh
Mali for their work on Silver and the extensible specifications for
Java, Lustre, ANSI C, and Promela. We also thank Mark van den
Brand for pointing out the related work of Aycock and Horspool.

References
[1] A. Aho, R. Sethi, and J. Ullman.Compilers – Principles, Techniques,

and Tools. Addison-Wesley, Reading, MA, 1986.

[2] J. Aycock and R. N. Horspool. Schrödinger’s token. Software:
Practice and Experience, 31(8):803–814, 2004.

[3] A. Begel and S. L. Graham. XGLR - an algorithm for ambiguity
in programming languages.Science of Computer Programming,
61(3):211–227, 2006.

[4] B. Ford. Parsing expression grammars: a recognition-based syntactic
foundation.SIGPLAN Not., 39(1):111–122, 2004.

[5] J. Gao, M. Heimdahl, and E. Van Wyk. Flexible and extensible
notations for modeling languages. InFundamental Approaches to
Software Engineering, FASE 2007, volume 4422 ofLNCS, pages
102–116. Springer-Verlag, March 2007.

[6] R. Grimm. Better extensibility through modular syntax. InPLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 38–51, New York, NY,
USA, 2006. ACM Press.

[7] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR∗: A toolset
for specifying and analyzing requirements. InProc. of the10

th

Annual Conference on Computer Assurance, COMPASS 95, 1995.

[8] A. Johnstone, E. Scott, and G. Economopoulos. Generalized parsing:
Some costs. InProc. International Conf. on Compiler Construction,
volume 2985 ofLNCS, pages 89–103. Springer-Verlag, 2004.

[9] D. E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, 1965.

[10] S. Marlow and A. Gill. Happy user guide. Happy is a parser-generator
for Haskell available at:www.haskell.org/happy.

[11] S. McPeak and G. C. Necula. Elkhound: a fast, practical GLR parser
generator. InProc. International Conf. on Compiler Construction,
volume 2985 ofLNCS, pages 73–88. Springer-Verlag, 2004.

[12] M. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disam-
biguation filters for scannerless generalized lr parsers. In Proc.
11th International Conf. on Compiler Construction, volume 2304 of
LNCS, pages 143–158, 2002.

[13] E. Van Wyk, D. Bodin, L. Krishnan, and J. Gao. Silver: an extensible
attribute grammar system. InProc. of LDTA 2007,7th Workshop on
Language Descriptions, Tools, and Analysis, 2007.

[14] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski.
Forwarding in attribute grammars for modular language design.
In Proc. 11th Intl. Conf. on Compiler Construction, volume 2304 of
LNCS, pages 128–142, 2002.

[15] E. Van Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. At-
tribute grammar-based language extensions for java. InEuropean
Conference on Object Oriented Programming (ECOOP), LNCS.
Springer-Verlag, July 2007. To Appear.

[16] E. Van Wyk and A. Schwerdfeger. Context-aware scanning:
Specification, implementation, and applications. TechnicalReport
07-012, Univ. of Minnesota, April 2007.

[17] E. Visser. Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam,
Aug. 1997.

[18] T. A. Wagner and S. L. Graham. Incremental analysis of realpro-
gramming languages. InPLDI ’97: Proc. of the ACM SIGPLAN 1997
conference on Programming language design and implementation,
pages 31–43, New York, NY, USA, 1997. ACM Press.

