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Abstract

Large Language Models (LLMs) have demonstrated tremendous capabilities in solving com-
plex tasks, from quantitative reasoning to understanding natural language. However, LLMs
sometimes suffer from confabulations (or hallucinations) which can result in them making plau-
sible but incorrect statements (Bang et al., 2023; Borji, 2023). This hinders the use of current
large models in scientific discovery. Here we introduce FunSearch (short for searching in the
function space), an evolutionary procedure based on pairing a pre-trained LLM with a system-
atic evaluator. We demonstrate the effectiveness of this approach to surpass the best known re-
sults in important problems, pushing the boundary of existing LLM-based approaches (Lehman
et al., 2022). Applying FunSearch to a central problem in extremal combinatorics — the cap
set problem — we discover new constructions of large cap sets going beyond the best known
ones, both in finite dimensional and asymptotic cases. This represents the first discoveries made
for established open problems using LLMs. We showcase the generality of FunSearch by apply-
ing it to an algorithmic problem, online bin packing, finding new heuristics that improve upon
widely used baselines. In contrast to most computer search approaches, FunSearch searches for
programs that describe how to solve a problem, rather than what the solution is. Beyond being
an effective and scalable strategy, discovered programs tend to be more interpretable than raw
solutions, enabling feedback loops between domain experts and FunSearch, and the deployment
of such programs in real-world applications.

Many problems in mathematical sciences are “easy to evaluate,” despite being typically “hard to
solve.” For example, in computer science, NP-complete optimization problems admit a polynomial-
time evaluation procedure (measuring the quality of the solution), despite the widespread belief that
no polynomial-time algorithms to solve such problems exist. We focus in this paper on problems
admitting an efficient evaluate function, which measures the quality of a candidate solution. Promi-
nent examples include the maximum independent set problem and maximum constraint satisfaction
problems (such as finding the ground state energy of a Hamiltonian). Our goal is to generate a
solve program, such that its outputs receive high scores from evaluate (when executed on inputs
of interest), and ultimately improve over the best known solutions.

∗Equal contributors.
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While Large Language Models (LLMs) have recently seen dramatic improvements in their coding
capabilities [5–9], with applications including debugging [10, 11], solving code competitions [12, 13]
and improving code performance [14], synthesizing solve programs for open problems requires find-
ing new ideas that are verifiably correct. This is very hard for LLMs, as they tend to confabulate or
ultimately fall short of going beyond existing results. To surpass the “nominal” capabilities of LLMs,
recent works [3] have combined them with evolutionary algorithms [15, 16], leading to important
improvements on diverse synthetic problems [17], searching for neural network architectures [18–20],
and solving puzzles [21]. Our proposed method, FunSearch, pushes the boundary of LLM-guided
evolutionary procedures to a new level: the discovery of new scientific results for established open
problems, and the discovery of new algorithms. Surpassing state-of-the-art results on established
open problems provides a clear indication that the discoveries are truly new, as opposed to being
retrieved from the LLM’s training data.

FunSearch (short for searching in the function space) combines a pre-trained (frozen) Large Lan-
guage Model, whose goal is to provide creative solutions, with an evaluator, which guards against
confabulations and incorrect ideas. FunSearch iterates over these two components, evolving initial
low-scoring programs into high-scoring ones discovering new knowledge. Key to the success of this
simple procedure is a combination of multiple essential ingredients. First, we sample best performing
programs and feed them back into prompts for the LLM to improve on; we refer to this as best-shot
prompting. Second, we start with a program in the form of a skeleton (containing boilerplate code
and potentially prior structure about the problem), and only evolve the part governing the critical
program logic. For example, by setting a greedy program skeleton, we evolve a priority function
used to make decisions at every step. Third, we maintain a large pool of diverse programs by using
an island-based evolutionary method that encourages exploration and avoids local optima. Finally,
leveraging the highly parallel nature of FunSearch, we scale it asynchronously, considerably broad-
ening the scope of this approach to find new results, while keeping the overall cost of experiments
low.

We show the surprising effectiveness of FunSearch on several use-cases. We consider a fundamen-
tal problem in extremal combinatorics, namely, the cap set problem [22, 23]. FunSearch demonstrates
the existence of hitherto unknown constructions that go beyond existing ones, including the largest
improvement in 20 years to the asymptotic lower bound. To the best of our knowledge, this shows
the first scientific discovery — a new piece of verifiable knowledge about a notorious scientific prob-
lem — using an LLM. Using FunSearch, we also find new algorithms for the online bin packing
problem that improve upon traditional ones on well-studied distributions of interest [24, 25], with
potential applications to improving job scheduling algorithms.

While most computer search techniques output directly what the solution is (e.g., a list of vectors
forming a cap set), FunSearch produces programs generating the solution. For structured problems,
such programs tend to be more interpretable — facilitating interactions with domain experts —
and concise — making it possible to scale to large instances — compared to a mere enumeration
of the solution. In addition, decision procedures (such as for bin packing) described by code in a
standard programming language are crucially easier to deploy compared to other types of descriptions
(e.g., neural networks), which typically require specialized hardware and for which verifying design
specifications is notoriously hard.

1 FunSearch

An overview of FunSearch is shown in Figure 1, and its components are described in more detail
below. For more details and ablations showing the importance of each component, see Methods and
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Figure 1: Overview of FunSearch. The input to FunSearch is a specification of the problem in
the form of an evaluate function, an initial implementation of the function to evolve, which can
be trivial, and potentially a skeleton. At each iteration, FunSearch builds a prompt by combining
several programs sampled from the programs database (favouring high-scoring ones). The prompt is
then fed to the pre-trained LLM, and new programs are created. Newly created programs are then
scored and stored in the programs database (if correct), thus closing the loop. The user can at any
point retrieve the highest-scoring programs discovered so far.

Appendix A in Supplementary Information.

Specification. The input to FunSearch is a specification of the problem in the form of an evaluate

function, which scores candidate solutions. In addition, we provide an initial program (which can
be trivial) to evolve. While in principle these are the minimum requirements, we found that perfor-
mance tends to improve significantly if we write the initial solve program in the form of a skeleton
(containing boilerplate code and prior knowledge of the problem in the form of a program struc-
ture), and only use FunSearch to evolve the critical part that governs its logic. Figure 2 (a) shows
an example where the skeleton takes the form of a simple greedy algorithm, and the crucial part to
evolve by FunSearch is the priority function that is used to make the greedy decision at every step.
This delegates to FunSearch precisely the part that is usually the hardest to come up with. While
a fixed skeleton may constrain the space of programs that can be discovered, we find it improves
overall results because it focuses the LLM resources on evolving the critical part only, instead of also
using the LLM to recreate already known program structures (with more opportunities for mistakes
that would render the entire program incorrect). If available, the user can optionally provide addi-
tional known information about the problem at hand, in the form of docstrings, relevant primitive
functions, or import packages, which FunSearch may use.
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"""Finds large cap sets."""
import numpy as np
import utils_capset

# Function to be executed by FunSearch.
def main(n):

"""Runs `solve` on `n`-dimensional cap set and
evaluates the output."""↪→

solution = solve(n)
return evaluate(solution, n)

def evaluate(candidate_set, n):
"""Returns size of candidate_set if it is a cap

set, None otherwise."""↪→
if utils_capset.is_capset(candidate_set, n):

return len(candidate_set)
else:

return None

def solve(n):
"""Builds a cap set of dimension `n` using

`priority` function."""↪→
# Precompute all priority scores.
elements = utils_capset.get_all_elements(n)
scores = [priority(el, n) for el in elements]
# Sort elements according to the scores.
elements = elements[np.argsort(scores,

kind='stable')[::-1]]↪→

# Build `capset` greedily, using scores for
prioritization.↪→

capset = []
for element in elements:

if utils_capset.can_be_added(element, capset):
capset.append(element)

return capset

# Function to be evolved by FunSearch.
def priority(element, n):

"""Returns the priority with which we want to add
`element` to the cap set."""↪→

return 0.0

(a) Cap set.

"""Finds good assignment for online 1d bin
packing."""↪→

import numpy as np
import utils_packing

# Function to be executed by FunSearch.
def main(problem):

"""Runs `solve` on online 1d bin packing instance,
and evaluates the output."""↪→

bins = problem.bins
# Packs `problem.items` into `bins` online.
for item in problem.items:

# Extract bins that have space to fit item.
valid_bin_indices =

utils_packing.get_valid_bin_indices(item,
bins)

↪→
↪→
best_index = solve(item,

bins[valid_bin_indices])↪→
# Add item to the selected bin.
bins[valid_bin_indices[best_index]] -= item

return evaluate(bins, problem)

def evaluate(bins, problem):
"""Returns the negative of the number of bins

required to pack items in `problem`."""↪→
if utils_packing.is_valid_packing(bins, problem):

return -utils_packing.count_used_bins(bins,
problem)↪→

else:
return None

def solve(item, bins):
"""Selects the bin with the highest value according

to `heuristic`."""↪→
scores = heuristic(item, bins)
return np.argmax(scores)

# Function to be evolved by FunSearch.
def heuristic(item, bins):

"""Returns priority with which we want to add
`item` to each bin."""↪→

return -(bins - item)

(b) Online bin packing.

Figure 2: Examples of FunSearch specifications for two problems. The evaluate function takes
as input a candidate solution to the problem, and returns a score assessing it. The solve function
contains the algorithm skeleton, which calls the function to evolve that contains the crucial logic.
For (a), the function to evolve is called priority, and for (b) it is called heuristic. The main

function implements the evaluation procedure by connecting the pieces together. Specifically, it uses
the solve function to solve the problem, and then scores the resulting solutions using evaluate. In
simplest cases, main just executes solve once and uses evaluate to score the output, e.g., see (a).
In specific settings such as online algorithms, the main function implements some additional logic,
e.g., see (b).

Pre-trained LLM. The LLM is the creative core of FunSearch, in charge of coming up with
improvements to the functions presented in the prompt and sending these for evaluation. Perhaps
surprisingly, we obtain our results with a pre-trained model, i.e., without any fine-tuning on our
problems. We use Codey, an LLM built on top of the PaLM2 model family [26], which has been
finetuned on a large corpus of code and is publicly accessible through its API [27]. Because FunSearch
relies on sampling from an LLM extensively, an important performance-defining tradeoff is between
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the quality of the samples and the inference speed of the LLM. In practice, we have chosen to work
with a fast-inference model (rather than slower-inference, higher-quality), and the results in the
paper are obtained using a total number of samples on the order of 106. Beyond this tradeoff, we
have empirically observed that the results obtained in this paper are not too sensitive to the exact
choice of LLM, as long as it has been trained on a large enough corpus of code. See Appendix A in
Supplementary Information for a comparison to StarCoder [7], a state-of-the-art open-source LLM
for code.

Evaluation. Programs generated by the LLM are evaluated and scored on a set of inputs. For
example, in the cap set problem (Section 2.1) the inputs are the values of the dimensionality n
that we are interested in, and in combinatorial optimization (Section 2.2), the inputs correspond
to different bin packing instances. The scores across different inputs are then combined into an
overall score of the program using an aggregation function, such as the mean. The scored programs
are then sent to the programs database. Programs that were incorrect (did not execute within the
imposed time and memory limits, or produced invalid outputs) are discarded, and the remaining
scored programs are then sent to the programs database.

Programs database. The programs database keeps a population of correct programs, which are
then sampled to create prompts. Preserving and encouraging diversity of programs in the database is
crucial to enable exploration and avoid being stuck in local optima. To encourage diversity we adopt
an islands model, also known as multiple population and multiple-deme model [28, 29], a genetic
algorithm approach. A number of islands, or subpopulations, are created and evolved independently.
To sample from the program database, we first sample an island and then sample a program within
that island, favoring higher-scoring and shorter programs (see Methods for the exact mechanism).
Crucially, we let information flow between the islands by periodically discarding the programs in the
worst half of the islands (corresponding to the ones whose best individuals have the lowest scores).
We replace the programs in those islands with a new population, initialized by cloning one of the
best individuals from the surviving islands.

Prompt. New prompts are created by “best-shot prompting” from the programs database, and
are then fed to the LLM to generate a new program. We first sample k programs from a single island
in the programs database, according to the procedure described above. Sampled programs are then
sorted according to their score, and a version is assigned to each (v0 for the lowest scoring program,
v1 for the second lowest scoring, etc.). These programs are then combined into a single prompt —
with the version appended as a suffix to the function name; e.g., in the case of Figure 2 (a), this
would be priority v0, priority v1, ... — and the header of the function we wish to generate
(e.g., priority vk) is added to the end of the prompt. In practice, we set k = 2, as two functions
lead to better results compared to just one, with diminishing returns beyond that. Constructing a
prompt by combining several programs (as opposed to only one) enables the LLM to spot patterns
across the different programs and generalize those. Related approaches to prompt building have
been recently considered; e.g., [17], and were shown to perform well on different domains.

Distributed approach. We implement FunSearch as a distributed system that has three types
of workers: a programs database, samplers, and evaluators, which communicate asynchronously. The
programs database stores and serves programs, samplers generate new functions using the pre-trained
LLM, while evaluators assess programs, as shown in Figure F.26 in Supplementary Information. In
the example of Figure 2 (a), the programs database stores priority functions, samplers generate
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new implementations of priority, while evaluators score the proposals by executing the main func-
tion on user-specified inputs. Our distributed system offers several advantages: first, it naturally
leverages parallelism across different tasks, e.g., LLM sampling and evaluation are performed con-
currently. Second, it enables scaling to more than one sampler and evaluator, which would be a
very limiting setup, considering that evaluation can take minutes for many problems of interest.
Running evaluators in parallel considerably broadens the scope of this approach to such problems.
The distributed setting enables running many evaluator nodes on inexpensive CPU hardware, while
few samplers run on machines with accelerators for fast LLM inference; this keeps the overall cost
and energy usage of experiments low. In our experiments, we typically use 15 samplers and 150 CPU
evaluators (can be served on 5 CPU servers each running 32 evaluators in parallel). See Appendix
A in Supplementary Information for more details. Also, due to the randomness of LLM sampling
and of the evolutionary procedure, for some problems we run several experiments to get the best
reported results. See Methods and Appendix A.3 in Supplementary Information for a full statistical
analysis.

2 Results

We now describe some of the new discoveries made by FunSearch in two different fields: pure math-
ematics and applied computer science. Additional discoveries on other problems (namely, corners
problem and Shannon capacity of cycle graphs) are presented in Appendix B in Supplementary
Information. Full discovered programs are available in Appendix C in Supplementary Information.

2.1 Extremal combinatorics

We apply FunSearch to two related problems in extremal combinatorics — a branch of mathematics
that studies the maximal (or minimal) possible sizes of sets satisfying certain properties.

Cap sets. The cap set problem [22], once described by Terence Tao as “perhaps my favourite open
question” [30], refers to the task of finding the largest possible set of vectors in Zn

3 (known as a cap
set) such that no three vectors sum to zero. Geometrically, no three points of a cap set lie on a line
(see Figure 3 for an example with n = 2).

The problem has drawn much interest for a variety of reasons. For one, it is an analogue of
the classical number theory problem of finding large subsets of primes in which no three are in
arithmetic progression. For another, it differs from many problems in combinatorics in that there
is no consensus among mathematicians regarding what the right answer should be. Finally, the
problem serves as a model for the many other problems involving “three-way interactions.” For
instance, progress towards improved upper bounds for the cap set problem [31, 32] immediately led
to a series of other combinatorial results, e.g., on the Erdös-Radio sunflower problem [33].

The exact size of the largest possible cap set in n dimensions is known only for n ≤ 6. A
brute force approach is not practical as the search space quickly becomes enormous with growing
n, e.g., around 31600 for n = 8. Previous methods impose potentially suboptimal restrictions on the
search space [34, 35]. In contrast, we search the full space via an algorithm skeleton that utilises a
function priority : Zn

3 → R. Intuitively, this function provides a priority with which each x ∈ Zn
3

should be included in the cap set. Our algorithm starts with an empty set and iteratively adds the
vector x ∈ Zn

3 with the highest priority that does not violate the cap set constraint; see Figure 2
(a). Starting from a trivial constant function, we evolve the crucial priority component of our
approach to result in large cap sets.
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Figure 3: Diagram of a cap set of size 4 in Z2
3. The circles are the elements of Z2

3 with the ones
belonging to the cap set shown in blue. The possible lines in Z2

3 are also shown (with colors indicating
lines that wrap around in arithmetic modulo 3). No three elements of the cap set are in a line.

Using this approach we discovered cap sets of sizes shown in Figure 4 (a). Notably, in dimension
n = 8, FunSearch found a larger cap set than what was previously known, thus illustrating the
power of FunSearch to discover novel constructions. This also shows the scalability of FunSearch to
larger dimensions, where the previously best known construction relied on a complex combination
of cap sets in lower dimensions [34, 35]. In contrast, FunSearch discovered a larger cap set from
scratch, without having to be explicitly taught any way of combining cap sets. Moreover, we do not
just discover the set of 512 8-dimensional vectors in itself, but a program that generates it: we show
this program in Figure 4 (b). Through inspecting the code, we obtain a degree of understanding
of what this set is: specifically, manual simplification of Figure 4 (b) provides the construction in
Figure 4 (c). Some properties of this construction are strikingly similar to the construction of the
Hill cap [36, 37], which results in the optimal 112-cap in Z6

3.

Admissible sets. Beyond finding the size of the largest cap set cn in dimension n, a fundamental

problem in additive combinatorics [23] is determining the capacity C = supn c
1/n
n . The breakthrough

result of [32] established an upper bound of C ≤ 2.756. In this work, we are interested in lower
bounds on C. To this end, we use the framework of constant weight admissible sets (or admissible
sets for short) [35], which has established the current state-of-the-art.

Formally, admissible sets A(n,w) are collections of vectors in {0, 1, 2}n satisfying two properties:
i) each vector has the same number w of non-zero elements but a unique support (thereby implying
|A| ≤

(
n
w

)
); ii) for any three distinct vectors there is a coordinate in which their three respective

values are {0, 1, 2}, {0, 0, 1}, or {0, 0, 2}. Informally, an admissible set describes how to combine
cap sets in smaller dimensions into large cap sets in higher dimensions [35]. We denote the set of
full-size admissible sets (with |A| =

(
n
w

)
) as I(n,w). The current state-of-the-art [39] has relied on

SAT solvers to construct large admissible sets.
As before, we evolve a function priority : {0, 1, 2}n → R, which is used to iteratively grow

admissible sets. Starting from a trivial constant function, we discover one that provides us with
an I(12, 7) admissible set; the discovered program is shown in Figure 5 (b). This discovery alone
already improves the lower bound on the cap set capacity from 2.2180 [39] to 2.2184. Yet, interpreting
the program found by FunSearch (Figure 5 b) helps us significantly push the boundaries of what
admissible sets we can construct. Specifically, we notice that the discovered priority function
treats the n coordinates in a highly symmetric way, and indeed it turns out that the admissible set
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n 3 4 5 6 7 8

Best known 9 20 45 112 236 496

FunSearch 9 20 45 112 236 512

(a)

def priority(el: tuple[int, ...],
n: int) -> float:↪→

score = n
in_el = 0
el_count = el.count(0)

if el_count == 0:
score += n ** 2
if el[1] == el[-1]:

score *= 1.5
if el[2] == el[-2]:

score *= 1.5
if el[3] == el[-3]:

score *= 1.5
else:

if el[1] == el[-1]:
score *= 0.5

if el[2] == el[-2]:
score *= 0.5

for e in el:
if e == 0:

if in_el == 0:
score *= n * 0.5

elif in_el == el_count - 1:
score *= 0.5

else:
score *= n * 0.5 ** in_el

in_el += 1
else:

score += 1

if el[1] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score

(b)

def build_512_cap() -> list[tuple[int, ...]]:
"""Returns a cap set of size 512 in `n=8` dimensions."""
n = 8
V = np.array(list(itertools.product(range(3), repeat=n)), dtype=np.int32)
support = lambda v: tuple(i for i in range(n) if v[i] != 0)
reflections = lambda v: sum(1 for i in range(1, n // 2) if v[i] == v[-i])

# Add all 128 weight-8 vectors that have >= 2 reflections.
weight8_vectors = [v for v in V

if np.count_nonzero(v) == 8 # Weight is 8.
and reflections(v) >= 2] # At least 2 reflections.

# Add all 128 weight-4 vectors that have specific support.
supports_16 = [(0, 1, 2, 3), (0, 1, 2, 5), (0, 3, 6, 7), (0, 5, 6, 7),

(1, 3, 4, 6), (1, 4, 5, 6), (2, 3, 4, 7), (2, 4, 5, 7)]
weight4_vectors = [v for v in V

if support(v) in supports_16]

# Add all 128 weight-4 vectors with specific support and 1 reflection.
supports_8 = [(0, 1, 2, 7), (0, 1, 2, 6), (0, 1, 3, 7), (0, 1, 6, 7),

(0, 1, 5, 7), (0, 2, 3, 6), (0, 2, 6, 7), (0, 2, 5, 6),
(1, 2, 4, 7), (1, 2, 4, 6), (1, 3, 4, 7), (1, 4, 6, 7),
(1, 4, 5, 7), (2, 3, 4, 6), (2, 4, 6, 7), (2, 4, 5, 6)]

weight4_vectors_2 = [v for v in V
if support(v) in supports_8
and reflections(v) == 1] # Exactly 1 reflection.

# Add 128 weight-5 vectors with <= 1 reflections and one more condition.
allowed_zeros = [(0, 4, 7), (0, 2, 4), (0, 1, 4), (0, 4, 6),

(1, 2, 6), (2, 6, 7), (1, 2, 7), (1, 6, 7)]
weight5_vectors = [

v for v in V
if tuple(i for i in range(n) if v[i] == 0) in allowed_zeros
and reflections(v) <= 1 # At most 1 reflection.
and (v[1] * v[7]) % 3 != 1 and (v[2] * v[6]) % 3 != 1]

return weight8_vectors + weight4_vectors + weight4_vectors_2 +
weight5_vectors↪→

(c)

Figure 4: Result of applying FunSearch to the cap set problem. (a) Size of the largest cap set in
Zn
3 for different dimensions n. (b) The function priority : Zn

3 → R discovered by FunSearch that
results in a cap set of size 512 in n = 8 dimensions. One feature to note is that the priority is affected
by whether the same entry appears in positions i and -i (-i denotes the i-th position counting
from the end). This motivates the notion of reflections, used in (c). (c) An explicit construction
of this new 512-cap, which we were able to manually construct thanks to having discovered the cap
set by searching in function space. See Appendix E.2 in Supplementary Information for more details
and for relation to Hill cap.

it constructs is preserved under independent cyclic permutations of coordinates within four disjoint
groups of coordinate triples. Hereinafter we call such admissible sets symmetric (see Appendix D in
Supplementary Information for a formal definition).
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Bound
on C

Admissible set
ingredient

Source

2.2101 I(90, 89) (Calderbank and Fishburn, 1994)

2.2173 I(10, 5) (Edel, 2004)

2.2180 I(11, 7) (Tyrrell, 2022)

2.2184 I(12, 7) FunSearch

2.2194 I(15, 10) FunSearch

2.2202 A(24, 17) FunSearch

(a)

def priority(el: tuple[int, ...], n: int, w: int) -> float:

score = 0.0

for i in range(n):

if el[i] == 1:

score -= 0.9 ** ( i % 4 )

if el[i] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 1 and el[i - 4] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] != 0:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

score -= 6.3

if el[i] == 2 and el[i - 4] == 2 and el[i - 8] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 1:

score -= 6.3

if el[i] == 2 and el[i - 4] == 0 and el[i - 8] == 2:

score -= 6.3

if el[i] == 1 and el[i - 4] == 1 and el[i - 8] == 0:

score -= 2.2

return score

(b)

Figure 5: Results on the cap set problem via admissible sets. (a) Summary of lower bounds on
the cap set capacity C. (b) The priority function {0, 1, 2}n → R discovered by FunSearch that
results in an I(12, 7) admissible set. The source code reveals that when n = 12, the function treats
the four triples of coordinates {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, and {3, 7, 11} together. We then checked
that the admissible set is in fact symmetric under independent cyclic permutations of coordinates
within each of these four triples. See Appendix D and Appendix E.3 in Supplementary Information
for more details.

We now use FunSearch to directly search for symmetric admissible sets. Note that this is a more
restricted but also much smaller search space, which allows for significantly higher dimensions and
weights than were previously possible. This led us to discovering a full-size I(15, 10) admissible set
(implying C ≥ 2.219486) and a partial admissible set in A(24, 17) of size 237 984, which implies
a new lower bound on the cap set capacity of 2.2202 (see Figure 5 a). While this is the largest
improvement to the lower bound in the last 20 years, we note it is still far from the upper bound,
and we hope our results inspire future work on this problem.

Not only does FunSearch scale to much larger instances than traditional combinatorial solvers
(see Appendix A.4 in Supplementary Information), it is a unique feature of searching in function
space that we were able to inspect the code discovered by FunSearch and infer a new insight into
the problem, in the form of a new symmetry. The procedure we followed in this section is a concrete
example of how LLM-based approaches can be used in mathematical sciences: FunSearch suggests
a solution, which is examined by researchers, who may note features of interest. These features are
used to refine the search, leading to better solutions. This process can be iterated, with both human
and search consistently in the loop.

2.2 Bin packing

Combinatorial optimization is a subfield of mathematics which plays an important role across a wide
range of areas, from theoretical computer science to practical problems in logistics and scheduling.
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OR1 OR2 OR3 OR4 Weibull 5k Weibull 10k Weibull 100k

First Fit 6.42% 6.45% 5.74% 5.23% 4.23% 4.20% 4.00%

Best Fit 5.81% 6.06% 5.37% 4.94% 3.98% 3.90% 3.79%

FunSearch 5.30% 4.19% 3.11% 2.47% 0.68% 0.32% 0.03%

Table 1: Fraction of excess bins (lower is better) for various bin packing heuristics on the OR and
Weibull datasets. FunSearch outperforms first fit and best fit across problems and instance sizes.

While many combinatorial optimization problems are provably hard to solve for large instances, it
is typically possible to achieve strong performance using heuristics to guide the search algorithm.
The choice of a heuristic is crucial for obtaining strong performance, but designing a good heuristic
is difficult in practice. In this section, we show that FunSearch can be used to discover effective
heuristics for one of the central problems in combinatorial optimization: bin packing [4].

The goal of bin packing is to pack a set of items of various sizes into the smallest number of
fixed-sized bins. Bin packing finds applications in many areas, from cutting materials to scheduling
jobs on compute clusters. We focus on the online setting where we pack an item as soon as it is
received (as opposed to the offline setting where we have access to all items in advance). Solving
online bin packing problems then requires designing a heuristic for deciding which bin to assign an
incoming item to.

Heuristics for online bin packing are well studied and several variants exist with strong worst
case performance [40–45]. However, they often exhibit poor performance in practice [4]. Instead, the
most commonly used heuristics for bin packing are first fit and best fit. First fit places the incoming
item in the first bin with enough available space, while best fit places the item in the bin with least
available space where the item still fits. Here, we show that FunSearch discovers better heuristics
than first fit and best fit on simulated data.

To achieve this, we define a heuristic as a program that takes as input an item and an array
of bins (containing the remaining capacity of each bin) and returns a priority score for each bin.
The solve function picks the bin with the highest score according to the heuristic (see Figure 2 b).
FunSearch is then used to evolve this heuristic, starting from best fit.

We first evaluate FunSearch on the well-known OR-Library bin packing benchmarks [24], con-
sisting of four datasets, OR1 to OR4, containing bin packing instances with an increasing number
of items (see Appendix E.4 in Supplementary Information for details). We evolve our heuristic on
a training set of generated bin packing instances with the same number of items as those in OR1
and, after the evolutionary process is concluded, test it on the OR1 to OR4 datasets. We measure
performance as the fraction of excess bins used over the L2 lower bound [46] of the optimal offline
packing solution (which is generally not achievable in the online setting).

As can be seen in Table 1, FunSearch outperforms both first fit and best fit across all datasets.
Further, the learned heuristic generalizes: even though it has only seen instances of the same size as
OR1 during training, it generalizes across problem sizes, performing even better on large instances
and widening the gap to best fit. In addition to the OR benchmarks, we also use FunSearch to evolve
heuristics on bin packing instances sampled from a Weibull distribution, as these closely follow many
real-world scheduling problems [25, 47] (see Appendix E.4 in Supplementary Information for details).
As shown in Table 1, the performance of FunSearch is very strong on this dataset, significantly
outperforming first fit and best fit across instances, as well as scaling gracefully to large instances
(being only 0.03% off the lower bound on the optimum for 100 000 items). In addition, FunSearch is
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def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
"""Online bin packing heuristic discovered with FunSearch."""
score = 1000 * np.ones(bins.shape)
# Penalize bins with large capacities.
score -= bins * (bins - item)
# Extract index of bin with best fit.
index = np.argmin(bins)
# Scale score of best fit bin by item size.
score[index] *= item
# Penalize best fit bin if fit is not tight.
score[index] -= (bins[index] - item)**4
return score

Figure 6: Example of a short online bin packing heuristic discovered by FunSearch for the OR
dataset. This example illustrates frequently observed behavior: instead of always packing items
into the best fit bin, the heuristic encourages packing the item only if the fit is tight (line 11).
Comments in the code were manually added. See Appendix C in Supplementary Information for
more discovered heuristics.

robust and consistently outperforms these baselines as shown in the statistical analysis in Appendix
A.3 in Supplementary Information.

We observed that several heuristics discovered by FunSearch use the same general strategy for
bin packing (see Figure 6 for an example). Instead of packing items into bins with the least capacity
(like best fit), the FunSearch heuristics assign items to least capacity bins only if the fit is very tight
after placing the item. Otherwise, the item is typically placed in another bin which would leave
more space after the item is placed. This strategy avoids leaving small gaps in bins that are unlikely
to ever be filled (see Appendix E.5 in Supplementary Information for example visualizations of such
packings).

As this example demonstrates, the benefits of FunSearch extend beyond theoretical and mathe-
matical results to practical problems like bin packing. Indeed, bin packing, and related combinatorial
optimization problems, are ubiquitous and find applications across a range of industries. We are
optimistic that FunSearch could be applied to several such use-cases with potential for real-world
impact.

3 Discussion

The effectiveness of FunSearch in discovering new knowledge for hard problems might seem intrigu-
ing. We believe that the LLM used within FunSearch does not use much context about the problem;
the LLM should instead be seen as a source of diverse (syntactically correct) programs with occa-
sionally interesting ideas. When further constrained to operate on the crucial part of the algorithm
with a program skeleton, the LLM provides suggestions that marginally improve over existing ones
in the population, which ultimately results in discovering new knowledge on open problems when
combined with the evolutionary algorithm. Another crucial component of the effectiveness of Fun-
Search is that it operates in the space of programs: rather than directly searching for constructions
(which is typically an enormous list of numbers), FunSearch searches for programs generating those
constructions. Because most problems we care about are structured (highly non-random), we hy-
pothesize that solutions are described more concisely with a computer program, compared to other
representations. For example, the trivial representation of the admissible set A(24, 17) consists of
more than 200 000 vectors, but the program generating this set consists only of a few lines of code.
Because FunSearch implicitly encourages concise programs, it scales to much larger instances com-
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pared to traditional search approaches in structured problems. In a loose sense, FunSearch attempts
to find solutions that have low Kolmogorov complexity [48–50] (which is the length of the short-
est computer program that produces a given object as output), while traditional search procedures
have a very different inductive bias. We believe that such Kolmogorov-compressed inductive bias
is key to FunSearch scaling up to the large instances in our use-cases. In addition to scale, we
have empirically observed that FunSearch outputs programs that tend to be interpretable — that
is, they are clearly easier to read and understand compared to a list of numbers. For example, by
scrutinizing FunSearch’s output for the admissible set problem, we found a new symmetry, which
was then subsequently used to improve the results even further. Despite the rarity of symmetric
solutions, we observe that FunSearch preferred symmetric ones, as these are more parsimonious
(that is, they require less information to specify), in addition to the natural bias of LLMs (trained
on human-produced code) in outputting code with similar traits to human code. This is in contrast
to traditional genetic programming which do not have this bias (and in addition require hand-tuning
the mutation operators [51]).

We note that FunSearch currently works best for problems having the following characteristics:
a) availability of an efficient evaluator; b) a “rich” scoring feedback quantifying the improvements
(as opposed to a binary signal); c) ability to provide a skeleton with an isolated part to be evolved.
For example, the problem of generating proofs for theorems [52–54] falls outside this scope, since
it is unclear how to provide a rich enough scoring signal. In contrast, for MAX-SAT, the number
of satisfied clauses can be used as a scoring signal. In this paper, we have explicitly striven for
simplicity and we are confident that FunSearch can be further extended to improve its performance
and be applicable to more classes of problems. In addition, the rapid development of LLMs is
likely to result in samples of far superior quality at a fraction of the cost, making FunSearch more
effective at tackling a broad range of problems. As a result, we envision that automatically-tailored
algorithms will soon become common practice and deployed in real-world applications.
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[43] J. Balogh, J. Békési, G. Dósa, J. Sgall, R. v. Stee, The optimal absolute ratio for online
bin packing, in: Proceedings of the twenty-sixth annual ACM-SIAM symposium on discrete
algorithms, SIAM, 2014, pp. 1425–1438.

[44] J. Balogh, J. Békési, G. Dósa, L. Epstein, A. Levin, A new and improved algorithm for
online bin packing, in: 26th Annual European Symposium on Algorithms (ESA 2018), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 5:1–5:14.

[45] E. G. Coffman, J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin packing approximation
algorithms: survey and classification, Handbook of combinatorial optimization (2013) 455–531.

[46] S. Martello, P. Toth, Lower bounds and reduction procedures for the bin packing problem,
Discrete applied mathematics 28 (1990) 59–70.

[47] S. Angelopoulos, S. Kamali, K. Shadkami, Online bin packing with predictions 36 (2022)
4574–4580.

[48] G. J. Chaitin, On the length of programs for computing finite binary sequences, Journal of the
ACM (JACM) 13 (1966) 547–569.
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A Methods

A.1 Implementation details of FunSearch

Distributed system. We implement FunSearch as a distributed system that has three types of
workers: a programs database, samplers, and evaluators. The programs database stores the initial
user-provided program, as well as all programs received from the evaluators. The samplers are in
charge of performing the LLM inference step; to do so they repeatedly query the programs database
for prompts. To achieve higher sampling throughput, samplers generate multiple samples from each
prompt. The samples from the LLM (i.e., the generated programs) are sent to the evaluators,
which score programs by executing them on inputs of interest and assessing the outputs using
evaluate. Programs that are correct are sent to the programs database to be stored. Each of
the three FunSearch components is provided as both Python code and pseudocode (Appendix F in
Supplementary Information).

Prompt building. When queried for a prompt, the programs database samples k programs to
encourage the LLM to merge ideas from them (we typically set k = 2; see Appendix E.1 in Sup-
plementary Information). Programs are sorted according to their score in increasing order, starting
from “version 0” (v0). Using these k programs, the prompt is built as explained next.

For the sake of clarity, we use here the problem specification from Figure 2 (a) to precisely
describe the prompting mechanism. The overall structure of the prompt mimics the structure of
the program skeleton, with the following differences: (i) The priority function is stripped out, and
replaced with the k = 2 programs sampled, first priority v0 and then priority v1. (ii) After
that, a priority v2 function with no body is appended — the LLM will be in charge of completing
the body of that function. (iii) All other functions that appear before priority v0 are removed.
See Extended Data Figure 1 for an example of the structure of a prompt.

Evolutionary method and program selection. Another key feature of FunSearch is the method
used for evolution of the population of programs from the programs database, as well as for program
selection, i.e., how the programs database samples programs when queried for a prompt. For this,
we use the islands model, a parallel genetic algorithm [28, 29]. Specifically, we split the population
into m separate groups, or islands. Each island is initialized with a copy of the user-provided initial
program and is evolved separately. That is, whenever a prompt is required, we first uniformly sample
an island and then sample k = 2 programs from that island to build the prompt. The programs
generated from the LLM based on that prompt will later be stored in the same island. Every four
hours, we discard all the programs from the m/2 islands whose best instances have the lowest score.
Each of these islands is then seeded with a single program, obtained by first choosing one of the
surviving m/2 islands uniformly at random, and then retrieving the highest-scoring program from
that island (breaking ties in favour of older programs). The evolutionary process is then restarted
from this state, in which the reset islands contain one high-performing program each (see Extended
Data Figure 2).

This method has several advantages. First, drawing the analogy where an island corresponds
to an experiment, this approach effectively allows us to run several smaller experiments in parallel,
instead of a single large experiment. This is beneficial because single experiments can get stuck in
local minima, where the majority of programs in the population are not easily mutated and combined
into stronger programs. The multiple island approach allows us to bypass this and effectively kill
off such experiments to make space for new ones starting from more promising programs. Second,
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promising experiments are run for longer, since the islands that survive a reset are the ones with
higher scores.

Within each island, we further cluster programs according to their signature. We define the
signature of a program as the tuple containing the program’s scores on each of the inputs (e.g., the
cap set size for each input n). Programs with the same signature are clustered together. When
sampling a program within an island, we first sample an island’s cluster, and then a program within
that cluster (see Extended Data Figure 3). This approach, which aims at preserving diversity
[55, 56], is related to Lexicase [57] in that both approaches consider a set of test cases for scoring an
individual, and it is related to fitness uniform optimization [58], which also clusters individuals based
on their fitness value, however we sample the clusters based on their score instead of uniformly, as
detailed next.

When sampling a cluster, we favor those with larger score values. Specifically, let si denote the
score of the i-th cluster, defined as an aggregation (e.g., mean) of all the scores in the signature that
characterizes that cluster. The probability pi of choosing cluster i is

pi =
exp (si/Tcluster)∑
i′ exp (si′/Tcluster)

, Tcluster = T0 ·
(

1 − n mod N

N

)
, (1)

where Tcluster is the temperature parameter, n is the current number of programs in the island,
and T0 and N are hyperparameters (given in Appendix E.1 in Supplementary Information). This
approach is sometimes referred to as the Boltzmann selection procedure [59].

When sampling a program within a cluster, we favor shorter programs. In particular, let ℓi
denote the negative length of the i-th program within the chosen cluster (measured as the number

of characters), and let ℓ̃i = ℓi−mini′ ℓi′
maxi′ ℓi′+10−6 . We set the probability of each program proportional to

exp(ℓ̃i/Tprogram), where Tprogram is a temperature hyperparameter.

Robustness. Due to randomness in LLM sampling and in the evolutionary procedure, repeating
an experiment can lead to different results. For some problems (e.g. cap set through the admissible
set problem, and online bin packing) every single run of FunSearch surpasses the baseline, with only
some variation in the magnitude of the difference. For example, all experiments on admissible sets
improve upon the previous best capacity lower bound, with 60% of experiments on I(12, 7) finding
a full-size admissible set. For other problems, multiple independent repetitions of an experiment
may be necessary to improve upon prior best results. In particular, the case of cap set by direct
construction in n = 8 dimensions is particularly challenging, with only 4 out of 140 experiments
discovering a cap set of size 512. See Appendix A.3 in Supplementary Information for more details.

A.2 Related work

Large Language Models. The rise of powerful LLMs such as [60] has been followed by systems
in which an LLM core is enveloped by a “programmatic scaffold” [61], and multiple LLM calls are
connected together in some way to accomplish larger and more intricate tasks beyond what would be
possible using a single prompt and the raw LLM, possibly using external tools or external memory
streams [62–66]. LLMs have also been paired with evaluators; for example, [21, 67] fine-tune an
LLM on data that has been previously generated by the LLM itself (respectively on puzzle problems
and solutions, and on justifications/explanations for answers to questions), and use an evaluator
to assess the correctness of this data, ensuring that the fine-tuning dataset contains correct solu-
tions/explanations only. More related to our approach is the use of LLMs as a mutation operator
on code. [3] was the first work to show that coupling an LLM with a programatic way of scoring a
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solution can lead to a self-improvement loop. In [17–20], the LLM is used as a crossover operator
rather than a mutation one, i.e., the LLM prompts are composed of several functions, similarly to
FunSearch. In [3, 17], the task is to improve code that generates bidimensional virtual robots that
can move as far as possible in a given simulated terrain ([17] additionally considers the tasks of
symbolic regression, natural language sentences, and image generation), in [18–20] the task is to
find neural network architectures (described with Python code), and in [68] the task is continuous
exploration in the game of Minecraft. In contrast, in this paper we tackle open problems in math-
ematics and algorithm design, and we surpass human-designed constructions. We achieve that by
combining multiple ingredients together: a distributed system with multiple samplers and evaluators
that communicate asynchronously, a user-provided program specification and skeleton, as well as
an evolutionary mechanism based on islands that preserves the diversity of programs. FunSearch
achieves that using an off-the-shelf LLM without fine-tuning.

More broadly, LLMs have been used for program synthesis as one of its main applications [5–9].
There are many use cases being explored, such as automatically editing code to improve performance
[14], automatically debugging code [10, 11], generating code from natural language descriptions [69–
71], and doing so to solve problems in code competitions [12, 13]. Unlike the above approaches
which provide tools to increase the productivity of software engineers, we combine in this paper
the creativity of LLMs with the power of evolutionary procedures to push the boundaries of human
knowledge through solving open hard problems. Another line of research uses LLMs to guide the
search for formal proofs for automatic theorem proving [52–54]. While this approach has the potential
of eventually finding new knowledge, the achievements of these methods still lag behind the frontier
of human knowledge.

Genetic programming. Genetic programming (GP) is a subfield of computer science concerned
with automatically generating or discovering computer programs using evolutionary methods [16,
72, 73] and is employed for symbolic regression applications [74, 75] and discovery of optimization
algorithms [76] among others. In this broad sense, combining LLMs with evolution can be seen
as an instance of GP with the LLM acting as a mutation and crossover operator. However, using
an LLM mitigates several issues in traditional GP [51], as shown in Appendix A in Supplementary
Information and discussed in [3]. Indeed, GP methods require defining a number of parameters,
chief among them the set of allowed mutation operations (or primitives) [16]. Designing such a set
of operations is non-trivial and problem-specific, requiring domain knowledge about the problem at
hand or its plausible solution [51]. While research has been done to mitigate this limitation, through
for example the reuse of subprograms [77] or modeling the distribution of high-performing programs
[78], designing effective and general code mutation operators remains difficult. In contrast, LLMs
have been trained on vast amounts of code and as such have learned about common patterns and
routines from human-designed code. The LLM can leverage this, as well as the context given in the
prompt, to generate more effective suggestions than the random ones typically used in GP.

Related to GP, the field of hyper-heuristics [79, 80] seeks to design learning methods for gen-
erating heuristics applied to combinatorial optimization problems. In practice, these heuristics are
often programs discovered through GP, typically by evolving a heuristic on a set of instances of a
given combinatorial optimization problem, such as bin packing [81]. Indeed, like FunSearch, hyper-
heuristics have also been applied to online bin packing, with the learned heuristics able to match the
performance of first fit [82] and best fit [83] on a set of generated bin packing instances. Augmenting
the heuristics with memory of previously seen items can even lead to heuristics outperforming best
fit [84]. In addition, these evolved heuristics can sometimes generalize to larger instances than the
ones they were trained on [85], similar to the learned FunSearch heuristics. However, as is the case
with GP, one of the fundamental limitations of hyper-heuristics is that the components of the evolved
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heuristic must be manually defined by the user and often need to be tailored to a specific problem
to be effective. The LLM in FunSearch allows us to bypass this limitation and learn heuristics for
bin packing and job scheduling as well as discovering novel mathematical constructions, all within
a single pipeline without problem specific tuning.

Program superoptimization and software engineering. Searching for the best way of mod-
ifying source code is a task that appears in multiple branches of computer science and software
development. These occurrences can be broadly classified into two groups: first, where the goal is to
find semantic-preserving modifications (this arises in program optimization and superoptimization,
where the aim is to modify the program so that it executes faster while maintaining its input-output
behaviour), and second, where the goal is to find programs with different semantics (this arises, e.g.,
in automatic program repair and mutation testing). With some exceptions discussed below, most
of these areas use relatively simple and hard-coded mutation operators on either the source code
directly (such as deleting or swapping lines) or on the abstract syntax tree (AST).

Machine learning approaches have been used for program superoptimization. For example, [86]
used reinforcement learning to learn the sampling probabilities used within a hierarchical prob-
abilistic model of simple program edits introduced by STOKE [87]. Neural networks have also
been proposed as a mutation operator for program optimization in [88]. These works operated on
code written in Assembly (perhaps because designing meaningful and rich edit distributions on pro-
grams in higher-level languages is challenging). More recently, [14] used LLMs to find performance-
improving edits to code written in C++ or Python. We also note that reinforcement learning has
recently been applied to discover new faster algorithms for fundamental operations such as matrix
multiplication [89] and sorting [90].

In this paper, we have not explicitly explored semantic-preserving applications such as discovering
performance-improving code edits, but we believe that FunSearch could be an effective method for
that setting too. In both use cases presented in Section 2, the goal is to evolve programs with new
semantics, but the application is different from program repair or mutation testing: in Section 2.1 we
used FunSearch to discover a program that constructs a previously unknown mathematical object,
and in Section 2.2 we used FunSearch to discover a program that corresponds to a more efficient
heuristic for online bin packing.

Data availability. The experiments carried out in this paper do not require any data corpus other
than the publicly available OR-Library bin packing benchmarks [24]. The output functions of interest
produced by FunSearch are shown across the main paper and in text files in the Supplementary
Information.

Code availability. The discovered functions as well as the evolutionary algorithm, code manipula-
tion routines, and a single-threaded implementation of the FunSearch pipeline are available as Python
code in the Supplementary information and at https://github.com/google-deepmind/funsearch.
Additionally, the software library launchpad [91], and a sandbox for safely executing generated code
on our internal distributed system were used. No training or fine-tuning of a large language model
is required; API access for inference is sufficient. We used Codey [27], which is available through its
API, and StarCoder [7], which is open source.

19

https://github.com/google-deepmind/funsearch


References

[55] J.-B. Mouret, S. Doncieux, Overcoming the bootstrap problem in evolutionary robotics using
behavioral diversity, in: 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 1161–
1168.

[56] J. K. Pugh, L. B. Soros, K. O. Stanley, Quality diversity: A new frontier for evolutionary
computation, Frontiers in Robotics and AI 3 (2016) 40.

[57] T. Helmuth, L. Spector, J. Matheson, Solving uncompromising problems with lexicase selection,
IEEE Transactions on Evolutionary Computation 19 (2015) 630–643.

[58] M. Hutter, S. Legg, Fitness uniform optimization, IEEE Transactions on Evolutionary Com-
putation 10 (2006) 568–589.

[59] M. de la Maza, An analysis of selection procedures with particular attention paid to propor-
tional and boltzmann selection, in: Proceedings of the fifth international conference on genetic
algorithms, 1993, Morgan Kaufmann, 1993.

[60] OpenAI, GPT-4 technical report, 2023. arXiv:2303.08774.

[61] B. Millidge, Scaffolded LLMs as natural language computers, https://www.beren.io/

2023-04-11-Scaffolded-LLMs-natural-language-computers, 2023. [Online; accessed July-
2023].

[62] T. Schick, J. Dwivedi-Yu, R. Dess̀ı, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda,
T. Scialom, Toolformer: Language models can teach themselves to use tools, arXiv preprint
arXiv:2302.04761 (2023).

[63] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, M. S. Bernstein, Generative agents:
Interactive simulacra of human behavior, arXiv preprint arXiv:2304.03442 (2023).

[64] J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, P. Christiano, Recursively
summarizing books with human feedback, arXiv preprint arXiv:2109.10862 (2021).

[65] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, A. Odena, Show your work: Scratchpads
for intermediate computation with language models, arXiv preprint arXiv:2112.00114 (2021).

[66] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, Y. Cao, ReAct: Synergizing
reasoning and acting in language models, in: International Conference on Learning Represen-
tations, 2023.

[67] E. Zelikman, Y. Wu, J. Mu, N. Goodman, Star: Bootstrapping reasoning with reasoning,
Advances in Neural Information Processing Systems 35 (2022) 15476–15488.

[68] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, A. Anandkumar, Voyager:
An open-ended embodied agent with large language models, arXiv preprint arXiv:2305.16291
(2023).

[69] P. Yin, W.-D. Li, K. Xiao, A. Rao, Y. Wen, K. Shi, J. Howland, P. Bailey, M. Catasta,
H. Michalewski, et al., Natural language to code generation in interactive data science note-
books, arXiv preprint arXiv:2212.09248 (2022).

20

http://arxiv.org/abs/2303.08774
https://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers
https://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers


[70] A. Ni, S. Iyer, D. Radev, V. Stoyanov, W.-t. Yih, S. Wang, X. V. Lin, Lever: Learning to
verify language-to-code generation with execution, in: International Conference on Machine
Learning, PMLR, 2023, pp. 26106–26128.

[71] S. Zhou, U. Alon, F. F. Xu, Z. Jiang, G. Neubig, Docprompting: Generating code by retrieving
the docs, in: International Conference on Learning Representations, 2022.

[72] W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic programming: an introduction:
on the automatic evolution of computer programs and its applications, Morgan Kaufmann
Publishers Inc., 1998.

[73] W. B. Langdon, R. Poli, Foundations of genetic programming, Springer Science & Business
Media, 2013.

[74] H. Ma, A. Narayanaswamy, P. Riley, L. Li, Evolving symbolic density functionals, Science
Advances 8 (2022).

[75] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, science 324
(2009) 81–85.

[76] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J.
Hsieh, et al., Symbolic discovery of optimization algorithms, arXiv preprint arXiv:2302.06675
(2023).

[77] J. R. Koza, Genetic programming II: automatic discovery of reusable programs, MIT press,
1994.

[78] R. Salustowicz, J. Schmidhuber, Probabilistic incremental program evolution, Evolutionary
computation 5 (1997) 123–141.

[79] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-heuristics: An
emerging direction in modern search technology, Handbook of metaheuristics (2003) 457–474.

[80] P. Ross, Hyper-heuristics, Search methodologies: introductory tutorials in optimization and
decision support techniques (2005) 529–556.

[81] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-heuristics:
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"""Finds large cap sets."""
import numpy as np
import utils_capset

def priority_v0(element, n):
"""Returns the priority with which we want to add `element` to the cap set."""
#######
# Code from lowest-scoring sampled program.
return ...
#######

def priority_v1(element, n):
"""Improved version of `priority_v0`."""
#######
# Code from highest-scoring sampled program.
return ...
#######

def priority_v2(element, n):
"""Improved version of `priority_v1`."""

Extended Data Figure 1: Example of best-shot prompting, based on the skeleton from Figure 2
(a). The prompt includes k = 2 implementations sampled from the programs database, with higher-
scoring implementations being more likely to be included.

Extended Data Figure 2: Evolutionary method. The initial programs are separated into islands
and each of them are evolved separately. After a number of iterations, the islands with the worst
score are wiped and the best program from the islands with the best score are placed in the empty
islands. Evolution then proceeds separately again until the next reset. This process is repeated until
termination.
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Extended Data Figure 3: Program clusters within islands. Within each island, programs are
grouped into clusters based on their signature (i.e., their scores on several inputs). We first sample
clusters, favoring the ones with higher score. Within the chosen clusters, we sample a program,
favoring shorter programs. The sampled programs are used to prompt the LLM which generates a
new program. If the new program is correct, it is added to the island, either in an existing cluster
or a new one if its signature was not yet present.
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A Analysis

Here we present an analysis of FunSearch, focusing on five aspects:

1. Importance of methodological choices in the design of FunSearch, showcased through ablations
of individual components (Appendix A.1).

2. Effect of the choice of LLM, together with a comparison to a non-LLM based mutation operator
(Appendix A.2).

3. Robustness of FunSearch, specifically the frequency with which it discovers the best results on
both extremal combinatorics and combinatorial optimization (Appendix A.3).

4. Scalability of FunSearch, specifically its ability to solve larger problem instances than tradi-
tional approaches. We illustrate this by comparing to the SAT-based approach for finding
large admissible sets (Appendix A.4).

5. Distributed nature of FunSearch, and the resulting cost and energy usage of running an ex-
periment with FunSearch (Appendix A.5).

A.1 Ablations

We carry out ablations on the task of finding the full-sized symmetric admissible set I(15, 10). Recall
that FunSearch consists of the following components, whose efficacy we wish to understand via the
means of ablation.

• Skeleton-based approach. In order to improve the chances of FunSearch to find the full-
sized I(15, 10), we provide a program skeleton that isolates the part of the code that needs
to be improved, namely, the priority function (see Figure C.10). The priority function
assigns a priority to include each potential vector in the admissible set. In order to understand
the importance of the skeleton-based approach, we use an alternative problem specification
where FunSearch is required to produce code that directly outputs an ordered list of all the
potential vectors. The symmetric admissible set is then constructed in a greedy fashion by
considering the vectors in the order provided and including the current one if it does not violate
any constraints with respect to the previously added vectors. We refer to this approach as
W/O Skeleton.

• Evolutionary approach. FunSearch keeps a population of correctly generated programs
in the programs database, and then combines them in a prompt to obtain new programs.
In order to understand the importance of evolving the prompts, we consider an alternative
method where only the initial (user-provided) prompt is used to generate a large number of
programs, which are then analyzed to identify the best one. We refer to this approach as W/O
Evolution.

• Maintaining population diversity. FunSearch adopts an approach based on an islands
model, where the islands with the lowest scoring programs are periodically killed and reinitial-
ized using the higher scoring ones. This encourages diversity among the programs generated
as each island evolves programs independently, while also allowing them to communicate with
each other periodically. In order to understand the importance of maintaining population
diversity, we consider an alternative method that has only a single island. We refer to this
approach as Less Diversity (as some diversity is still maintained through clustering within the
island).
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Figure A.1: Ablation study of FunSearch for finding the full-sized admissible set I(15, 10). The
x-axis shows the number of programs generated, while the y-axis shows the difference between
the size of the largest admissible set computed thus far, and the size of I(15, 10) (equal to

(
15
10

)
),

averaged over 5 random seeds (higher is better), as well as the corresponding standard error bars.
The curve ‘FunSearch’ refers to the overall FunSearch approach, while the other curves correspond
to its ablated variants (see text for details). As can be seen, the use of a skeleton and the evolution
of prompts are particularly critical for finding a good solution. With less diversity in the prompts,
we are able to obtain large but not a full-sized admissible set in any of the five runs.

• Prompt building. When constructing a new prompt, FunSearch samples k = 2 programs
from the programs database in order to allow the LLM to merge information from multiple
programs when creating a new one. To understand the importance of using multiple programs
in a single prompt, we consider an alternative approach where only a single program is used
to construct the prompt (i.e., k = 1). We refer to this approach as W/O Merging.

None of the variants were able to discover a full-sized I(15, 10) admissible set, with the exception
of the W/O Merging variant, which found it in 1 out of 5 runs. In comparison, FunSearch found
it in 2 out of 5 runs, and achieved a higher average size of the largest admissible set found than
other variants (see Figure A.1). We also note that in other tasks, such as computing cap sets
in dimensions n = 8, the W/O Merging variant was less successful at obtaining the best results
compared to FunSearch.

A.2 Choice of LLM

A key part of FunSearch is the use of an LLM to generate programs. This raises two important
questions. First, is the choice of the LLM critical to its performance? Second, is an LLM even
needed?

In order to answer the first question, we compare the performance of two LLMs: Codey [1],
which is the default model used in our experiments, and StarCoder [2], which is an open-sourced
model with 15 billion parameters available for free to all researchers.

In order to answer the second question, we compare the performance of FunSearch (which uses
LLMs to propose program improvements), with an alternative approach that does not use LLMs,
but instead relies on evolving programs via a hand-designed distribution of random mutations. To

3



0.0 0.5 1.0 1.5 2.0 2.5
Programs Generated 1e6

800

700

600

500

400

300

200

100

0

Sc
or

e

Codey
StarCoder
Random

Figure A.2: Ablation study of FunSearch for finding the full-sized admissible set I(15, 10). The
x-axis shows the number of programs generated, while the y-axis shows the difference in the size
of the largest admissible set found so far and I(15, 10) (higher is better). Five independent runs
are shown for each model, with the best run amongst each five (i.e., the one that provides the
largest admissible set the fastest) highlighted as a solid non-translucent line. Note that two of the
five runs for ‘Codey’ result in a full-sized admissible set. While ‘StarCoder’ is not able to find the
full-sized admissible set in any of the five runs, it still finds large admissible sets that improve upon
the previous state of the art lower bound on the cap set capacity. This illustrates that FunSearch is
robust to the choice of the model as long as it has been trained sufficiently well to generate code.

this end, we use mutations similar to [3]. In particular, we define a list of possible binary operations
(addition, multiplication, division, integer division, exponentiation, and modulo) and a list of unary
operations (indexing of arrays and several common NumPy functions [4]: np.log(x), np.sum(x),
np.argmin(x), np.argmax(x), np.median(x), np.exp(x), np.cumsum(x), np.max(x), np.min(x),
np.abs(x), np.sign(x), np.negative(x), np.square(x), and np.sqrt(x)) that can be used. To
produce a single mutation we parse the input program with the AST Python parser [5] and insert a
new variable at a location chosen at random, assigning to it the result of a new operation constructed
as follows. We pick a unary or a binary operation uniformly at random, and for each of its arguments
we choose either an already existing variable or a constant (which we draw from either the N (0, 1)
normal distribution, or uniformly from {−10, . . . , 10}). Additionally, for every existing operation we
delete it with probability 0.1, and for every existing binary operation we change it to another one
from the list with probability 0.2, or change one of its arguments (to a randomly chosen existing
variable or a random constant) with probability 0.2. We tuned this mutation process trying to make
it possible to reproduce some of the best programs discovered by FunSearch, but even with reference
solutions in mind we were always discovering additional corner cases or unsupported operations
which we would have to manually add, which emphasizes how much problem-specific effort the LLM
is saving.

Figure A.2 shows the results of the two LLMs and random program mutations, in five different
runs of each on the I(15, 10) problem. Note that StarCoder performs slightly worse compared to
Codey: in particular, unlike Codey, the StarCoder-based FunSearch is not able to find the full-
sized admissible set in any of the runs. However, it is still able to find very large admissible sets
that yield an improvement over the previous state-of-the-art cap set capacity lower bound. The
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use of an LLM is however clearly critical, as evidenced by the worse performance of the random
mutations approach.1 That said, even though random mutations were clearly inferior to LLMs in
results and required a lot more manual tweaking to make them work, their results still exceeded our
expectations, indicating the power of other ingredients of FunSearch (e.g., the skeleton structure
and the evolution pipeline).

A.3 Statistical analysis

(a) Cap set in 8 dimensions.
Higher is better.

(b) Admissible sets (n,w) of
various dimensions n and
weights w. Higher is better.

(c) Online bin packing for the
Weibull distribution. Lower
is better.

Figure A.3: Results across multiple runs of FunSearch. (a) Histogram of the size of the cap set
of dimension n = 8 found across 140 experiments. The task is highly challenging, as demonstrated
by the fact that only 4 out of the 140 experiments yield the new state of the art result of size 512.
(b) Histogram of the lower bound of the capacity for the cap set problem, computed using various
admissible sets. The light blue histogram corresponds to 5 runs for computing I(12, 7) without
imposing symmetry. Note that 3 out of the 5 runs find the complete admissible set. The purple
histogram corresponds to 5 runs for computing the symmetric I(15, 10). In this case, 2 out of the
5 runs find the complete admissible set. Finally, the dark blue histogram corresponds to 5 runs for
computing the partial A(24, 17), which establishes the new state of the art for the lower bound of
the capacity. (c) Histogram of the excess bins percentage across 10 runs of the online bin packing
problem. In all 10 runs, FunSearch finds a better heuristic than the two standard ones used in the
literature, namely, first fit and best fit.

The use of an LLM as well as our strategy of sampling the prompts from the database makes
the overall FunSearch approach stochastic in nature. It is therefore natural to ask how frequently
it can provide us with the state of the art results. To answer this, we run FunSearch multiple times
on the following problems.

• Finding large cap sets in n = 8 dimensions. Recall that FunSearch obtains a cap set of size
512, thereby establishing a new state of the art for this task.

• Computing the full admissible set I(12, 7) without explicitly imposing symmetry (which were in
fact discovered by analyzing the I(12, 7) obtained), the full symmetric admissible set I(15, 10),
and the partial admissible set A(24, 17), which provides the new state of the art lower bound
on the cap set capacity.

1Even after leaving “Random” generate more than 50 million programs, none of the runs were able to surpass
−240 and reached a plateau.
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• Generating a heuristic for online bin packing for the Weibull datasets. In the main paper, we
demonstrated that FunSearch can surpass long established baselines such as first fit and best
fit on this task.

Figure A.3 shows the results obtained by FunSearch across the multiple runs. As can be seen,
the problem of computing large cap sets appears to be particularly challenging, with less than 1/30
experiments providing a new state of the art cap set of size 512 of dimensionality 8. The difficulty
of this problem is also reflected in the fact that the lower bound of capacity of the cap set problem
has been typically established indirectly by computing large admissible sets instead. Indeed, even
for FunSearch, the problem of finding large admissible sets turns out to be significantly easier. In
particular, all 15 runs across the various dimensionalities and weights provide a better lower bound
than the previous state of the art. It is worth noting that for the problem of finding I(12, 7)
without imposing symmetry, all 3 runs that provide the full admissible set do so by computing a
symmetric one. This is not due to a large majority of admissible sets being symmetric by nature.
In fact, it is quite the opposite with less than 1% of full I(12, 7) sets satisfying the symmetry
property. This can be seen by the fact that, given an admissible set such that the k-th coordinate
of its i-th and j-th elements are 1 and 2 respectively, one can swap these coordinate values while
still maintaining admissibility. The fact that FunSearch consistently finds these rare admissible
sets shows its propensity to exploit problem symmetry where available. Finally, FunSearch is also
highly effective for finding accurate heuristics for online bin packing. Across the 10 runs shown
in Figure A.3c, the excess bins percentage obtained using the heuristic found by FunSearch is
0.44%±0.11% when evaluated on theWeibull 10k dataset2. In comparison, the excess bins percentage
for first fit and best first are 4.20% and 3.90% respectively. These results confirm that FunSearch is
able to discover the reported new results repeatedly.

A.4 Comparison with traditional solvers

As mentioned in the main paper, one of the advantages of FunSearch is its scalability, that is, its
ability to solve problems with enormous search spaces. In order to illustrate this advantage, we
compare FunSearch with a traditional solver for finding large admissible sets. As noted by [6], this
can be achieved by formulating the problem as a SAT instance, which enables the use of off-the-shelf
solvers. In our comparison, we use the state of the art CP-SAT solver [7], which is publicly available.

We tested two different versions of SAT formulation for admissible sets: (i) the natural encoding
of the problem as a SAT instance without any additional constraints, and (ii) an encoding with
additional, restrictive constraints handcrafted in [6] “by studying smaller examples of admissible
sets, heuristic arguments and a healthy dose of educated guesswork”. (There are three such sets of
constraints in [6], and we report the best results across the three.) For every admissible set size and
SAT formulation we picked 10 random (binary) variables and ran 210 different instances of CP-SAT
in parallel, each fixing the variables in one of the 210 possible ways, and running the solvers for at
least 50 hours each.

Table A.4 shows the results. As can be seen, while the SAT solver can be used successfully to
address small to medium sized problems, it is unable to handle larger problems. The reason for
the success of FunSearch is two-fold: (i) searching in the program space instead of attempting to
compute the optimal value of a large number of variables in a mathematical optimization program;
and (ii) the interpretability of the resulting programs, which enables the further restriction of the
search to more concise spaces such as symmetric admissible sets.

2Note that we train on datasets with 5k items and test on datasets with 10k items. As such our heuristic must
generalize across instance sizes and we therefore exclude functions that explicitly use the number of bins in the
heuristic.
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Admissible set I(n,w)
Method Method variant (9, 5) (10, 6) (11, 7) (12, 7) (15, 10)

Parallelized SAT out of the box ✓ × × × ×
FunSearch out of the box ✓ ✓ ✓ ✓ ×

Parallelized SAT w/ handcrafted constraints of [6] ✓ ✓ ✓ × ×
FunSearch w/ FunSearch-discovered symmetry ✓ ✓ ✓ ✓ ✓

Figure A.4: Comparison of a parallelized SAT solver and FunSearch on the problem of finding
admissible sets I(n,w). In both regimes – with and without additional constraints – FunSearch
scales to significantly larger instances.

A.5 Distributed setup and energy usage

Finally, we note the importance of employing a distributed approach within FunSearch. Finding the
full-sized symmetric admissible set I(15, 10) required the generation and analysis of approximately
two million programs. Without parallelization of both the samplers and the evaluators, it would
not have been possible to realize this result. It is worth noting, however, that parallelization does
not make FunSearch prohibitively expensive. To reproduce admissible set experiments done above
(generating 2 million samples) one would have to use 15 instances of StarCoder-15B running on
A100 40 GB GPU each and 5 CPU servers (each running 32 evaluators in parallel) for two days. We
estimate that when running on Google Cloud, the price of an experiment is around $800 – $1400, and
the energy usage around 250 – 500 kWh; i.e., 0.5% of the energy used for training StarCoder [2]. With
further engineering, we believe this cost and energy usage can be reduced significantly. Moreover,
in the upcoming years, advancements in LLMs as well as new inference hardware will lower the cost
even further.

B Other results

B.1 Shannon capacity of cycle graphs

The problems studied in Section 2.1 are tightly related to the problem of finding the Shannon
capacity of a graph. The Shannon capacity of a graph is an important quantity from Information
Theory as it indicates the amount of information that can be transmitted over a noisy channel with
zero probability of error [8–11]. Consider a discrete noisy communication channel in which certain
symbols can be confused with each other, with a graph describing these confusion patterns. The
vertices of the graph correspond to symbols (inputs of the channel), and the edges indicate which
symbols can be confused with each other at the receiver side of the communication channel. Formally,
the Shannon capacity of a graph G is defined as Θ(G) = supn

n
√
α(G⊠n), where G⊠n denotes the

n-th strong product of the graph, and α(G⊠n) denotes its independence number (i.e., the size of the
largest independent set).

One of the most studied graphs with unknown Shannon capacity is the cycle Cm, i.e., the graph
with m nodes and m edges consisting of a single cycle. Determining the Shannon capacity of cycle
graphs is a notorious open problem in extremal combinatorics [12, 13]. For even values of m, the
Shannon capacity of Cm is m/2; however for odd values of m, only the capacity for the cycle graph
of 5 nodes is known: Shannon showed the lower bound Θ(C5) ≥

√
5 in 1956 [8] and Lóvasz proved

the upper bound Θ(C5) ≤
√
5 in 1979 [14], therefore concluding Θ(C5) =

√
5. The Shannon capacity
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of the cycle graph Cm for odd values of m ≥ 7 remains unknown, although numerous bounds have
been proved [12, 14–20].

We apply FunSearch to find a function priority : {0, 1, . . . ,m − 1}n → R, with the aim of
constructing large independent set in powers of cycle graphs C⊠n

m , thereby finding lower bounds on
the Shannon capacity of cycle graphs. We discover the following results:

• For the cycle graph of 7 nodes, we find a program that outputs an independent set of size 367 for
C⊠5
7 , therefore recovering the best known lower bound Θ(C7) ≥ 5

√
367 [20]. Unlike the method

from [20], which finds a large independent set on a related circular graph and then uses some
heuristics to project it down to an independent set in C⊠5

7 , the program discovered by FunSearch
is simpler as it operates directly in C⊠5

7 , thus opening the door for easier interpretability of
this construction.

• For the cycle graph of 9 nodes, we find a single program that outputs independent sets achieving
the best known lower bounds of α(C⊠n

9 ) for n = 3, . . . , 7, i.e., α(C⊠3
9 ) ≥ 81, α(C⊠4

9 ) ≥ 324,
α(C⊠5

9 ) ≥ 1458, α(C⊠6
9 ) ≥ 6561, and α(C⊠7

9 ) ≥ 26244. (These bounds are taken from [19] and
extrapolated for n = 6 and n = 7 by taking products of smaller powers of the graph.) The
program discovered by FunSearch is surprisingly simple —just a couple of lines of code— and
provides the state-of-the-art results for multiple powers of the graph. Again, we believe this
provides an opportunity for mathematicians for further analysis, understanding, and possibly
improvement of the solutions.

• For the cycle graph of 11 nodes, we find a program that provides an independent set of size
754 on C⊠4

11 , therefore improving upon the best existing lower bound, α(C⊠4
11 ) ≥ 748 [16, 19].

The programs achieving these results are listed in Appendix C.

B.2 Corners problem

The corners problem is a related problem in extremal combinatorics, with connections to communi-
cation complexity [21–28]. The problem is to find the largest corner-free set in Zn

p × Zn
p ,

3 where a
corner is a triple of elements (x, y), (x+ λ, y), (x, y+ λ) (in arithmetic modulo p), with x, y, λ ∈ Zn

p

and λ ̸= 0. As for many other problems in mathematics and extremal combinatorics such as the cap
set problem, the main quantity of interest is the capacity — the asymptotic rate of growth of the
largest corner-free set in Zn

p × Zn
p as n → ∞.

The best known asymptotic lower bounds for the corners problem on Zn
2 ×Zn

2 and Zn
3 ×Zn

3 were
obtained using the method of combinatorial degenerations [27]. The combinatorial degenerations
method attempts to find the largest set of vertices in a specific hypergraph (i.e., a generalization
of a graph in which edges can connect to more than two vertices) describing the problem, such
that vertices in the set satisfy certain feasibility constraints [27, Section 2.3]. Any set S of vertices
satisfying those constraints implies a lower bound on the capacity of the corners problem, C ≥ n

√
|S|,

which in turn means that the size of the largest corner-free set in Zn
p × Zn

p grows asymptotically at
least as Cn/poly(n) when n → ∞.

We use FunSearch to guide a greedy search approach to find the largest possible set of vertices
in the hypergraph that satisfy the combinatorial degeneration constraints. Similarly to the previous
sections, we attempt to find a function priority : Zn

p × Zn
p → R that assigns a priority score to

each candidate vertex of the hypergraph. The greedy approach starts with an empty list of indices
(each representing a vertex), and at each iteration it adds the valid index (i.e., guaranteeing the
combinatorial degeneration constraints) with the highest priority, until it is not possible to add
more. The priority heuristic found by FunSearch directly leads to new lower bounds on the capacity
for the corners problem; see Table B.1. In particular, we find C ≥ 4

√
137 ≈ 3.421 for Z2 and

3The corners problem can be defined for any abelian group, but here we restrict our attention to Zp.
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n
Best known [27] FunSearch
size capacity size capacity

1 3 3 3 3
2 11 3.317 11 3.317
3 39 3.391 39 3.391
4 − − 137 3.421

(a) Results in Z2.

n
Best known [27] FunSearch
size capacity size capacity

1 7 7 7 7
2 − − 53 7.280
3 − − 370 7.179

(b) Results in Z3.

Table B.1: FunSearch improves the best known capacity for the corners problem. The table shows
the largest set of vertices satisfying the combinatorial degenerations constraints for multiple powers
n of the corners hypergraph, as well as the implied lower bounds on the capacity.

C ≥
√
53 ≈ 7.280 for Z3, which improve upon the previously best lower bounds of 3.391 and 7,

respectively.

C Skeletons and discovered programs

This section shows functions discovered by FunSearch for different problems described in the paper.
Note that we have lightly edited these functions by removing unused lines, renaming some variables,
and adding comments, in order to increase their readability.

Throughout this section, the decorators @funsearch.run and @funsearch.evolve are just a
way to indicate the main entry point of the program and the function that FunSearch should evolve,
respectively.

C.1 Cap sets

In Figure C.6 below we show the full version of the program skeleton in Figure 2 (a). One point
to note is that in case the priority function leads to ties between elements of Zn

3 , these ties are
broken by using the lexicographical order of the elements. Another point to note is that it is
perhaps surprising that we can obtain good cap set constructions using priority functions that do
not explicitly take into account which specific elements have already been added to the cap set.
When choosing the next element of Zn

3 to add, the current state is taken into account only to give
a yes or no answer as to whether the element next in line is allowable. Searching this simple class
of programs yields surprisingly good results, and at least for now we were not able to do any better
by allowing programs that take the current state into account in a more sophisticated way.

def priority(el: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add `el` to the cap set."""
el = np.array(el, dtype=np.float32)
weight = (el @ el) % 3 # Weight (mod 3) of the full vector.
a = n // 3
b = n - n // 3
s_1 = (el[:b] @ el[:b]) % 3 # Weight (mod 3) of first two thirds.
s_3 = (2 * (el[:a] @ el[:a])) % 3 # Double norm of first third.
s_4 = (el[:a] @ el[a:b]) % 3 # Cross correlation.
s_5 = np.sum(el[:a] == el[-1]) % 3
return - 3 ** 3 * s_1 + 3 ** 2 * weight + 3 ** 3 * s_3 + 3 ** 2 * s_4 + s_5
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Figure C.5: Priority function that yields a cap set of size 1082 in n = 9 dimensions. For each
el ∈ Zn

3 it returns the priority with which we should include el in the cap set. Similarly to the
priority function yielding a 512-cap in Z8

3 shown in Figure 4 (a), this priority function also partitions
the coordinates into multiple groups, in this case three groups of size three each.

"""Finds large cap sets."""
import itertools
import numpy as np

@funsearch.run
def evaluate(n: int) -> int:

"""Returns the size of an `n`-dimensional cap set."""
capset = solve(n)
return len(capset)

def solve(n: int) -> np.ndarray:
"""Returns a large cap set in `n` dimensions."""
all_vectors = np.array(list(itertools.product((0, 1, 2), repeat=n)), dtype=np.int32)

# Powers in decreasing order for compatibility with `itertools.product`, so
# that the relationship `i = all_vectors[i] @ powers` holds for all `i`.
powers = np.array([3 ** i for i in range(n - 1, -1, -1)], dtype=np.int32)

# Precompute all priorities.
priorities = np.array([priority(tuple(vector), n) for vector in all_vectors])

# Build `capset` greedily, using priorities for prioritization.
capset = np.empty(shape=(0, n), dtype=np.int32)
while np.any(priorities != -np.inf):

# Add a vector with maximum priority to `capset`, and set priorities of
# invalidated vectors to `-inf`, so that they never get selected.
max_index = np.argmax(priorities)
vector = all_vectors[None, max_index] # [1, n]
blocking = np.einsum('cn,n->c', (- capset - vector) % 3, powers) # [C]
priorities[blocking] = -np.inf
priorities[max_index] = -np.inf
capset = np.concatenate([capset, vector], axis=0)

return capset

@funsearch.evolve
def priority(el: tuple[int, ...], n: int) -> float:

"""Returns the priority with which we want to add `el` to the cap set."""
return 0.0

Figure C.6: The full version of the program skeleton shown in Figure 2 (a), used to discover large
cap sets.

C.2 Admissible sets

In Figure 5 (b) we have seen a priority function discovered by FunSearch that not only yielded a
full-size I(12, 7) admissible set, but also inspired us to conceive the notion of symmetric admissible
sets (see Appendix D for more details). Here we show priority functions discovered by FunSearch
that directly construct large symmetric admissible sets. See also Figure C.10 below for the program
skeleton.

def priority(el: tuple[int, ...], n: int, w: int) -> float:
"""Returns the priority with which we want to add `el` to the set."""
score = 0.0
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for i in range(n):
if el[i] < el[i - 1]:

score += 1
elif el[i] < el[i - 2]:

score += 0.05
elif el[i] < el[i - 3]:

score -= 0.05
elif el[i] < el[i - 4]:

score += 0.01
elif el[i] < el[i - 5]:

score -= 0.01
elif el[i] < el[i - 6]:

score += 0.001
else:

score += 0.005

for i in range(n):
if el[i] == el[i - 1]:

score -= w
elif el[i] == 0 and i != n - 1 and el[i + 1] != 0:

score += w
if el[i] != el[i - 1]:

score += w

for i in range(n):
if el[i] < el[i - 1]:

if el[i] == 0:
score -= w

return score

Figure C.7: A priority function that leads to a full-size constant-weight symmetric admissible set
I(15, 10).

def priority(el: tuple[int, ...], n: int, w: int) -> float:
"""Returns the priority with which we want to add `el` to the set."""
score = 0
coeff = 0
for pos, x in zip(range(n), el):

y = (el[(pos + 1) % n] - el[(pos)]) % n
z = (el[(pos + 2) % n] - el[(pos)]) % n
p = (el[(pos - 1) % n] + 1) % n

u = (el[(pos - 2) % n] + 1) % n
v = (el[(pos + 3) % n] + 1) % n

score += 3 * p * (p + coeff) * (p + w) + (p + coeff)**2 * (w + 1)
score += 2 * p * v * (p + w) + v * z * (-1 + w) - (p + coeff) * (-1 + w)
score += v * (u + w) + u + 3 * u * y * (1 + w) + u * z * (w - 1) - (p + coeff) * (w - 1)
score += (1 + w)**6 * 3 * coeff**2

return score

Figure C.8: A priority function that leads to a constant-weight symmetric admissible set of size
43 596 in A(21, 15). The existence of such a set implies the cap set capacity lower bound of 2.2200.

def priority(el: tuple[int, ...], n: int, w: int) -> float:
"""Returns the priority with which we want to add `el` to the set."""
result = 0.0
for i in range(n):

n_violations = 0
if el[i] < el[i - 1]:

result += (el[i - 1] ** 0.5) * w ** 2 / (6 * 6)
n_violations += 1

if el[i] < el[i - 2]:
result += el[i - 2] ** 0.5
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n_violations += 1
if el[i - 1] != 0:

result -= (el[i] - el[i - 1]) * w ** 2 / (6 * 3)
n_violations += 2

if el[i - 2] != 0:
result -= (el[i] - el[i - 2]) * w ** 2 / (6 * 6) * (0.95 ** n_violations)
n_violations += 1

result -= (0.02 ** el[i]) * (el[i] - el[i - 8])
return result

Figure C.9: A priority function that leads to a constant-weight symmetric admissible set of size
237 984 in A(24, 17). The existence of such a set implies the cap set capacity lower bound of 2.2202.

"""Finds large symmetric admissible sets."""
import itertools
import numpy as np

TRIPLES = [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 2), (0, 2, 1), (1, 1, 1), (2, 2, 2)]
INT_TO_WEIGHT = [0, 1, 1, 2, 2, 3, 3]

def expand_admissible_set(
pre_admissible_set: list[tuple[int, ...]]) -> list[tuple[int, ...]]:

"""Expands a pre-admissible set into an admissible set."""
num_groups = len(pre_admissible_set[0])
admissible_set = []
for row in pre_admissible_set:

rotations = [[] for _ in range(num_groups)]
for i in range(num_groups):

x, y, z = TRIPLES[row[i]]
rotations[i].append((x, y, z))
if not x == y == z:

rotations[i].append((z, x, y))
rotations[i].append((y, z, x))

product = list(itertools.product(*rotations))
concatenated = [sum(xs, ()) for xs in product]
admissible_set.extend(concatenated)

return admissible_set

def get_surviving_children(extant_elements, new_element, valid_children):
"""Returns the indices of `valid_children` that remain valid after adding `new_element` to `extant_elements`."""
bad_triples = set([

(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (0, 4, 4), (0, 5, 5),
(0, 6, 6), (1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3), (1, 2, 4),
(1, 3, 3), (1, 4, 4), (1, 5, 5), (1, 6, 6), (2, 2, 2), (2, 3, 3),
(2, 4, 4), (2, 5, 5), (2, 6, 6), (3, 3, 3), (3, 3, 4), (3, 4, 4),
(3, 4, 5), (3, 4, 6), (3, 5, 5), (3, 6, 6), (4, 4, 4), (4, 5, 5),
(4, 6, 6), (5, 5, 5), (5, 5, 6), (5, 6, 6), (6, 6, 6)])

# Compute.
valid_indices = []
for index, child in enumerate(valid_children):

# Invalidate based on 2 elements from `new_element` and 1 element from a
# potential child.
if all(INT_TO_WEIGHT[x] <= INT_TO_WEIGHT[y]

for x, y in zip(new_element, child)):
continue

# Invalidate based on 1 element from `new_element` and 2 elements from a
# potential child.
if all(INT_TO_WEIGHT[x] >= INT_TO_WEIGHT[y]

for x, y in zip(new_element, child)):
continue

# Invalidate based on 1 element from `extant_elements`, 1 element from
# `new_element`, and 1 element from a potential child.
is_invalid = False
for extant_element in extant_elements:

if all(tuple(sorted((x, y, z))) in bad_triples
for x, y, z in zip(extant_element, new_element, child)):
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is_invalid = True
break

if is_invalid:
continue

valid_indices.append(index)
return valid_indices

def solve(n: int, w: int) -> list[tuple[int, ...]]:
"""Generates a symmetric constant-weight admissible set I(n, w)."""
num_groups = n // 3
assert 3 * num_groups == n

# Compute the scores of all valid (weight w) children.
valid_children = []
for child in itertools.product(range(7), repeat=num_groups):

weight = sum(INT_TO_WEIGHT[x] for x in child)
if weight == w:

valid_children.append(np.array(child, dtype=np.int32))
valid_scores = np.array([

priority(sum([TRIPLES[x] for x in xs], ()), n, w)
for xs in valid_children])

# Greedy search guided by the scores.
pre_admissible_set = np.empty((0, num_groups), dtype=np.int32)
while valid_children:

max_index = np.argmax(valid_scores)
max_child = valid_children[max_index]
surviving_indices = get_surviving_children(pre_admissible_set, max_child,

valid_children)
valid_children = [valid_children[i] for i in surviving_indices]
valid_scores = valid_scores[surviving_indices]

pre_admissible_set = np.concatenate([pre_admissible_set, max_child[None]],
axis=0)

return expand_admissible_set(pre_admissible_set)

@funsearch.run
def evaluate(n: int, w: int) -> int:

"""Returns the size of the expanded admissible set."""
return len(solve(n, w))

@funsearch.evolve
def priority(el: tuple[int, ...], n: int, w: int) -> float:

"""Returns the priority with which we want to add `el` to the set."""
return 0.0

Figure C.10: The program skeleton used to search directly for symmetric admissible sets. See Ap-
pendix D for more details on this setting.

"""Finds large admissible sets."""
import itertools
import numpy as np

def block_children(scores: np.ndarray,
admissible_set: np.ndarray,
new_element: np.ndarray) -> None:

"""Modifies `scores` to -inf for elements blocked by `new_element`."""
n = admissible_set.shape[-1]
powers = np.array([3 ** i for i in range(n - 1, -1, -1)], dtype=np.int32)

invalid_vals_raw = {
(0, 0): (0,),
(0, 1): (1,),
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(0, 2): (2,),
(1, 0): (1,),
(1, 1): (0, 1, 2),
(1, 2): (1, 2),
(2, 0): (2,),
(2, 1): (1, 2),
(2, 2): (0, 1, 2),

}
invalid_vals = [[np.array(invalid_vals_raw[(i, j)], dtype=np.int32)

for j in range(3)] for i in range(3)]

# Block 2**w elements with the same support as `new_element`.
w = np.count_nonzero(new_element)
all_12s = np.array(list(itertools.product((1, 2), repeat=w)), dtype=np.int32)
blocking = np.einsum('aw,w->a', all_12s, powers[new_element != 0])
scores[blocking] = -np.inf

# Block elements disallowed by a pair of an extant point and `new_element`.
for extant_element in admissible_set:

blocking = np.zeros(shape=(1,), dtype=np.int32)
for e1, e2, power in zip(extant_element, new_element, powers):

blocking = (blocking[:, None] + (invalid_vals[e1][e2] * power)[None, :]
).ravel()

scores[blocking] = -np.inf

def solve(n: int, w: int) -> list[tuple[int, ...]]:
"""Generates a constant-weight admissible set I(n, w)."""
children = np.array(list(itertools.product((0, 1, 2), repeat=n)),

dtype=np.int32)

scores = -np.inf * np.ones((3 ** n,), dtype=np.float32)
for child_index, child in enumerate(children):

if sum(child == 0) == n - w:
scores[child_index] = priority(np.array(child), n, w)

max_admissible_set = np.empty((0, n), dtype=np.int32)
while np.any(scores != -np.inf):

# Find element with largest score.
max_index = np.argmax(scores)
child = children[max_index]
block_children(scores, max_admissible_set, child)
max_admissible_set = np.concatenate([max_admissible_set, child[None]],

axis=0)

return [tuple(map(int, el)) for el in max_admissible_set]

@funsearch.run
def evaluate(n: int, w: int) -> int:

"""Returns the size of the constructed admissible set."""
return len(solve(n, w))

@funsearch.evolve
def priority(el: tuple[int, ...], n: int, w: int) -> float:

"""Returns the priority with which we want to add `el` to the set."""
return 0.0

Figure C.11: The program skeleton used to search for general (non-symmetric) admissible sets.

C.3 Combinatorial optimization

def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
"""Returns priority with which we want to add item to each bin.

Args:
item: Size of item to be added to the bin.
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bins: Array of capacities for each bin.

Return:
Array of same size as bins with priority score of each bin.

"""
def s(bin, item):

if bin - item <= 2:
return 4

elif (bin - item) <= 3:
return 3

elif (bin - item) <= 5:
return 2

elif (bin - item) <= 7:
return 1

elif (bin - item) <= 9:
return 0.9

elif (bin - item) <= 12:
return 0.95

elif (bin - item) <= 15:
return 0.97

elif (bin - item) <= 18:
return 0.98

elif (bin - item) <= 20:
return 0.98

elif (bin - item) <= 21:
return 0.98

else:
return 0.99

return np.array([s(bin, item) for bin in bins])

Figure C.12: Best performing heuristic for the OR datasets.

def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
"""Returns priority with which we want to add item to each bin.

Args:
item: Size of item to be added to the bin.
bins: Array of capacities for each bin.

Return:
Array of same size as bins with priority score of each bin.

"""
score = 1.56 * bins - item - 4 * np.log(bins) + 0.16
score[score > item] = item * 0.56
return -score

Figure C.13: Simple heuristic for the OR datasets. While the performance of this heuristic is
slightly worse than the best, it still significantly outperforms first fit and best fit across datasets.

def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
"""Returns priority with which we want to add item to each bin.

Args:
item: Size of item to be added to the bin.
bins: Array of capacities for each bin.

Return:
Array of same size as bins with priority score of each bin.

"""
score = (bins - max(bins))**2 / item + bins**2 / item**2 + bins**2 / item**3
score[bins > item] *= -1
score[1:] -= score[:-1]
return score
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Figure C.14: Best performing discovered heuristic for the Weibull datasets.

C.4 Shannon capacity of cycle graphs

See Appendix B.1 for a description of this problem, and the obtained results.

"""Obtains maximal independent sets."""
import funsearch
import itertools
import numpy as np

@funsearch.run
def evaluate(num_nodes: int, n: int) -> int:

"""Returns the size of an independent set."""
independent_set = solve(num_nodes, n)
return len(independent_set)

def solve(num_nodes: int, n: int) -> list[tuple[int, ...]]:
"""Gets independent set with maximal size.

Args:
num_nodes: The number of nodes of the base cyclic graph.
n: The power we raise the graph to.

Returns:
A list of `n`-tuples in `{0, 1, 2, ..., num_nodes - 1}`.

"""
to_block = np.array(list(itertools.product([-1, 0, 1], repeat=n)))

# Powers in decreasing order for compatibility with `itertools.product`, so
# that the relationship `i = children[i] @ powers` holds for all `i`.
powers = np.array(

[num_nodes ** i for i in range(n - 1, -1, -1)], dtype=np.int32)

# Precompute the priority scores.
children = np.array(

list(itertools.product(range(num_nodes), repeat=n)), dtype=np.int32)
scores = np.array([priority(tuple(child), num_nodes, n)

for child in children])

# Build `max_set` greedily, using scores for prioritization.
max_set = np.empty(shape=(0, n), dtype=np.int32)
while np.any(scores != -np.inf):

# Add a child with a maximum score to `max_set`, and set scores of
# invalidated children to -inf, so that they never get selected.
max_index = np.argmax(scores)
child = children[None, max_index] # [1, n]

blocking = np.einsum(
'cn,n->c', (to_block + child) % num_nodes, powers) # [C]

scores[blocking] = -np.inf
max_set = np.concatenate([max_set, child], axis=0)

return [tuple(map(int, el)) for el in max_set]

@funsearch.evolve
def priority(el: tuple[int, ...], num_nodes: int, n: int) -> float:

"""Returns the priority with which we want to add `el` to the set.

Args:
el: an n-tuple representing the element to consider whether to add.
num_nodes: the number of nodes of the base graph.
n: an integer, power of the graph.
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Returns:
A number reflecting the priority with which we want to add `el` to the
independent set.

"""
return 0.

Figure C.15: User-provided problem specification for the Shannon capacity of cycle graphs problem
(Appendix B.1). The initial priority function returns 0 regardless of the inputs.

def priority(el: tuple[int, ...], num_nodes: int, n: int) -> float:
"""Returns the priority with which we want to add `el` to the set.

Args:
el: an n-tuple representing the element to consider whether to add.
num_nodes: the number of nodes of the base graph.
n: an integer, power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the
independent set.

"""
score = 0.
for i in range(n):

if el[i] == el[(i + 2) % n]:
score += 1

else:
score -= 1

x = ((n - 2) * el[i] - el[(i + 1) % n]
- el[(i + 2) % n] - (n + 1) * el[(i + 3) % n]) % num_nodes

score -= 0.5 * (x - el[(i + 1) % n]) ** 2
score += 0.1 * (num_nodes - 1 - (x - 1) % num_nodes) ** 2
score += 0.2 * (num_nodes - 1 - (x - 2) % num_nodes) ** 2

return score

Figure C.16: A priority function that leads to an independent set of size 367 in C⊠5
7 .

def priority(el: tuple[int, ...], num_nodes: int, n: int) -> float:
"""Returns the priority with which we want to add `el` to the set.

Args:
el: an n-tuple representing the element to consider whether to add.
num_nodes: the number of nodes of the base graph.
n: an integer, power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the
independent set.

"""
s = 0.
for i in range(n):

s += el[i] << i
s %= num_nodes

return (2 * el[2] - 4 * el[0] + el[1]) % num_nodes + s

Figure C.17: A priority function that leads to independent sets of size 81, 324, 1458, 6561, and
26244 in C⊠n

9 , for n = 3, 4, 5, 6, 7, respectively.

def priority(el: tuple[int, ...], num_nodes: int, n: int) -> float:
"""Returns the priority with which we want to add `el` to the set.

Args:
el: an n-tuple representing the element to consider whether to add.
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num_nodes: the number of nodes of the base graph.
n: an integer, power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the
independent set.

"""
el_clipped = np.clip(el, a_min=None, a_max=num_nodes - 3)
values = 2 * np.array(list(itertools.product(range(1, n), repeat=n)))
multipliers = np.array(

[num_nodes ** i for i in range(n - 1, -1, -1)], dtype=np.int32)
x = np.sum((1 + values + el_clipped) * multipliers, axis=-1)
return np.sum(x % (num_nodes - 2), dtype=float)

Figure C.18: A priority function that leads to an independent set of size 754 in C⊠4
11 .

C.5 Corners problem

For the corners problem (see Appendix B.2), we search for the largest set of indices in {0, 1, . . . , 22n}
(for Zn

2 ×Zn
2 ) or {0, 1, . . . , 32n} (for Zn

3 ×Zn
3 ) satisfying the combinatorial degeneration constraints.

These constraints are given in [27, Eq. 3]. For each candidate set of indices, we check if the combina-
torial degeneration constraints are met, which can be done via a linear program that we implement
in C++.

With FunSearch, we search for a priority function that we use to guide a greedy procedure,
where we iteratively add the next valid node (index) with highest priority score, until it is not
possible to add more valid nodes.

"""Corners problem via combinatorial degenerations."""
import corners
import funsearch
import itertools
import numpy as np

@funsearch.run
def evaluate(n: int) -> int:

"""Returns the size of the maximum set of indices found by DFS."""
return len(solve(n))

def solve(n: int) -> list[tuple[int, ...]]:
"""Runs DFS to find a large set of indices."""
# Obtain the priority scores.
scores = np.array(

[priority(el, n) for el in itertools.product(range(2), repeat=2 * n)]
)
all_indices = np.arange(len(scores), dtype=np.int32)
# Run a greedy a approach that iteratively adds the next highest-priority
# index that guarantees the combinatorial degeneration property.
return corners.greedy(all_indices, scores)

@funsearch.evolve
def priority(el: tuple[int, ...], n: int) -> float:

"""Returns the priority with which we want to add `el`.

Args:
el: A candidate element to be considered, as a tuple of length `2 * n` with
elements in {0, 1}.

n: Power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the set.
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"""
return 0.

Figure C.19: User-provided problem specification for the corners problem (Appendix B.2) in
Zn
2 × Zn

2 (it is analogous for the case Zn
3 × Zn

3 ). The initial priority function returns 0 regardless
of the inputs.

def priority(el: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add `el`.

Args:
el: A candidate element to be considered, as a tuple of length `2 * n` with
elements in {0, 1}.

n: Power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the set.

"""
s0 = 0
s1 = 0
for i in range(1, 2 * n - 1):

cur = el[i] ^ el[i - 1] ^ el[i + 1]
if i < n - 1:

if cur != 1:
s0 += 1

if i > n:
if cur != 1:

s1 += 1
t1 = - ((s1 - s0) ** 6 - 3 * (s1 - s0) ** 3 + (s1 - s0))
t2 = (el[0] + el[2 * n - 1]) ** 6
t3 = - 3 * (el[0] + el[2 * n - 1]) ** 3
t4 = el[0] + el[2 * n - 1]
t5 = 0.01 * (

el[0] ^ el[n - 1] + el[0] ^ el[2 * n - 1] - el[n - 1] ^ el[2 * n - 1])
t6 = 0.04 * min(el[n - 1], el[n]) ** 6
return t1 + t2 + t3 + t4 + t5 + t6

Figure C.20: A priority function that leads to a set of indices of size 137 satisfying the combi-
natorial degeneration constraints for Zn

2 × Zn
2 when n = 4.

def priority(el: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add `el`.

Args:
el: A candidate element to be considered, as a tuple of length `2 * n` with
elements in {0, 1, 2}.

n: Power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the set.

"""
def aux_fn(a: float) -> float:

return (int(np.absolute(a) // 3) + 1) * 3 - np.absolute(a)

num = 0
m = 0
c = 0
s = 0
for i, (a, b) in enumerate(itertools.zip_longest(el, el[1:], fillvalue=3)):

if i % 2:
continue

s += max(0, np.absolute(a - b) - 1)
num += aux_fn(a + b)
m += aux_fn((a + b) / 3)
c += aux_fn(a - b)
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s += (num // 3 + m) ** 2 / 3 + (num + m) ** 2 - (num + m + c) ** 2
return -s / (1 + max(0.0, (num - 1) // 3))

Figure C.21: A priority function that leads to a set of indices of size 53 satisfying the combina-
torial degeneration constraints for Zn

3 × Zn
3 when n = 2.

def priority(el: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add `el`.

Args:
el: A candidate element to be considered, as a tuple of length `2 * n` with
elements in {0, 1, 2}.

n: Power of the graph.

Returns:
A number reflecting the priority with which we want to add `el` to the set.

"""
t = 0
t2 = 0
x = 0
x2 = 0
for i in range(n):

t += el[2 * i] + el[2 * i + 1]
if el[2 * i] > el[2 * i + 1]:

t += 1
if el[2 * i + 1] == el[2 * i]:

t2 += 2
else:

t2 -= 1
if i > 0 and (el[2 * i - 1] == el[2 * i] == 2):

t2 += 1
if i < n - 1 and (el[2 * (i + 1)] == el[2 * i] == 2):

t2 += 1
x += el[2 * i]
x2 += el[2 * i] ** 2

return -t + 2 * t2 + 0.1 * el[-1] - 2 * (n - x) + n - 2. + 2 * t / n - x2 / n

Figure C.22: A priority function that leads to a set of indices of size 370 satisfying the combi-
natorial degeneration constraints for Zn

3 × Zn
3 when n = 3.

D Symmetric admissible sets and pre-admissible sets

This section formally describes the notion of symmetric admissible sets, a notion which was inspired
by inspecting the source code discovered by FunSearch for constructing an I(12, 7) admissible set
(see Appendix E.3 for more details). Afterwards this section describes how we can directly search
for symmetric admissible sets, by searching for “generators” of symmetric admissible sets – we call
these generators pre-admissible sets. This is the method we used to obtain our best lower bounds
on the cap set capacity.

First we recall the definition of an admissible set, as it appears in [6]. Note that this definition
can be traced back to [29], which however used a different nomenclature.

Definition 1. A set A ⊆ {0, 1, 2}n is called admissible if

1. for all ordered pairs of distinct vectors (x,y) ∈ A2 there is a coordinate 1 ≤ i ≤ n such that
xi = 0 ̸= yi,

2. for all triples of distinct vectors x,y, z ∈ A there is a coordinate 1 ≤ i ≤ n such that

{xi, yi, zi} ∈ {{0, 1, 2}, {0, 0, 1}, {0, 0, 2}}, (1)
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where {·, ·, ·} is used to denote a multiset of three elements here.

The following definition is constructed by us, after being inspired by one of the functions discov-
ered by FunSearch.

Definition 2. We call an admissible set A ⊆ {0, 1, 2}n in n = 3k dimensions symmetric if it is
preserved (as a set, i.e. up to reordering) under all 3k cyclic permutations of coordinates within
the k disjoint consecutive triples of coordinates [0, 1, 2] , . . . , [3(k − 1), 3(k − 1) + 1, 3(k − 1) + 2]. In
other words, it is preserved as a set under the group action Zk

3 , with the action fc of a group element
g = (g1, . . . , gk) ∈ Zk

3 on a vector x ∈ A given by

fc(g,x) = fc((g1, . . . , gk), (x0, x1, x2, . . . , x3(k−1)+0,3(k−1)+1,3(k−1)+2))

= (xg1(0), xg1(1), xg1(2), . . . , x3(k−1)+gk−1(0), x3(k−1)+gk−1(1), x3(k−1)+gk−1(2)), (2)

where gi(j) = (i+ j) mod 3.

Remark 1. Inspecting the definition of admissible sets, it is easy to see that if we arbitrarily permute
(relabel) the n coordinates of a valid admissible set A ⊆ {0, 1, 2}n, the resulting set is still admissible.
However, Definition 2 of symmetric admissible set states a stronger requirement – under specific
permutations of coordinates, the resulting admissible set must remain the same (as a set, i.e. up to
reordering of its A elements).

We’ll be searching directly for symmetric admissible sets. To set up this restricted search space,
we’ll make use of the following definitions.

Definition 3. Let S := {0, 1, . . . , 6} and define a decoding function ϕ : S → {0, 1, 2}3 as

ϕ(a) =



(0, 0, 0) if a = 0

(0, 0, 1) if a = 1

(0, 0, 2) if a = 2

(0, 1, 2) if a = 3

(0, 2, 1) if a = 4

(1, 1, 1) if a = 5

(2, 2, 2) if a = 6

(3)

Definition 4. The orbit of (x, y, z) ∈ Im(ϕ) is the (deduplicated) set

O((x, y, z)) := {(x, y, z), (y, z, x), (z, x, y)}, (4)

i.e. the orbit of (x, y, z) under the action of cyclically permuting its elements. The orbit length
l : Im(ϕ) → {1, 3} is defined to be the size of this set:

l(ϕ(a)) := |O(ϕ(a))| =

{
1 if a ∈ {0, 5, 6}
3 if a ∈ {1, 2, 3, 4}

(5)

Remark 2. The decoded elements Im(ϕ) are precisely the elements of {0, 1, 2}3 (up to cyclic permu-
tations) whose orbits form a valid admissible set. For example, (0, 0, 2) generates the admissible set
{(0, 0, 2), (0, 2, 0), (2, 0, 0)}, whereas {1, 1, 2} ̸∈ Im(ϕ) would generate the set {(1, 1, 2), (1, 2, 1), (2, 1, 1)},
which is not admissible.

21



Definition 5. The weight of an element in S = {0, 1, . . . , 6} is given by w : S → {0, 1, 2, 3} defined
as

w(a) = #{nonzeros in ϕ(a)} =


0 if a = 0

1 if a ∈ {1, 2}
2 if a ∈ {3, 4}
3 if a ∈ {5, 6}

(6)

Definition 6. For k ∈ N, a k-dimensional pre-admissible set is a set P ⊆ {0, 1, . . . , 6}k such that

1. for any ordered pair of distinct vectors (x,y) ∈ P 2 there is a column 1 ≤ i ≤ k such that
w(xi) < w(yi),

2. for any triple of distinct vectors x,y, z ∈ P there is a column 1 ≤ i ≤ k such that

{xk, yk, zk} ∈ {{0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 0, 4}, {0, 0, 5}, {0, 0, 6}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4},
{0, 1, 5}, {0, 1, 6}, {0, 2, 3}, {0, 2, 4}, {0, 2, 5}, {0, 2, 6}, {0, 3, 4}, {0, 3, 5}, {0, 3, 6},
{0, 4, 5}, {0, 4, 6}, {0, 5, 6}, {1, 1, 3}, {1, 1, 4}, {1, 1, 5}, {1, 1, 6}, {1, 2, 5}, {1, 2, 6},
{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 2, 3}, {2, 2, 4}, {2, 2, 5},
{2, 2, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 3, 5}, {3, 3, 6},
{3, 5, 6}, {4, 4, 5}, {4, 4, 6}, {4, 5, 6}} (7)

where {·, ·, ·} is used to denote a multi-set of 3 elements here.

As the naming suggests, the point of a pre-admissible set is that the orbits of its elements
automatically yield an admissible set. This is captured by the following theorem.

Theorem D.1. Given a k-dimensional pre-admissible set P , the set

A :=
⋃
x∈P

k⊗
i=1

O(ϕ(xk)) (8)

is a symmetric admissible set in n = 3k dimensions, of size
∑

x∈P

∏k
i=1 l(xi).

Remark 3. In the statement of Theorem D.1 we slightly abuse notation by identifying elements of⊗k
i=1 O(ϕ(xk)) ⊆ ({0, 1, 2}3)k with the corresponding flattened elements of {0, 1, 2}3k.

Remark 4. Theorem D.1 works for general admissible sets, not just constant-weight.

Proof of Theorem D.1. We need to verify the two defining conditions of an admissible set. Before
that, we start with a simple observation: since P is a set, it doesn’t contain duplicates, and therefore
it is easy to verify that the union in the definition of A is a disjoint union. In particular, each vector
x ∈ A stems from a single (well-defined) element x̂ ∈ P , which we call its generator.

Condition 1 Suppose x,y is an ordered pair of vectors from A. There are two cases we need to
consider:

1. x,y come from the same generator x̂ ∈ P

Since x,y are distinct, there must be a coordinate 1 ≤ i ≤ k in x̂ such that x3i:3(i+1) ̸=
y3i:3(i+1). In this case l(x̂i) ̸= 1, so x̂i ∈ {1, 2, 3, 4}, and it is easy to check that one of
j ∈ {3i, 3i+ 1, 3i+ 2} must be such that xj = 0 ̸= yj .
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2. x,y come from different generators x̂, ŷ ∈ P

By the first defining condition of pre-admissible set, there is a coordinate 1 ≤ i ≤ k such that
w(x̂i) < w(ŷi). This means there are strictly more zero coordinates in ϕ(x̂i) than in ϕ(ŷi),
which implies that at least one of j ∈ {3i, 3i+ 1, 3i+ 2} is such that xj = 0 ̸= yj .

Condition 2 Suppose x,y, z is a triple of distinct vectors from A. Without loss of generality,
there are just three cases we need to consider:

1. x,y, z come from the same generator x̂ ∈ P

Since x,y, z are distinct, there must be a coordinate 1 ≤ i ≤ k in x̂ such that x3i:3(i+1),
y3i:3(i+1), and z3i:3(i+1) are not all the same. In this case l(x̂i) ̸= 1, so x̂i ∈ {1, 2, 3, 4}, and it
is easy to check that one of j ∈ {3i, 3i+ 1, 3i+ 2} must be such that {xj , yj , zj} equals one of
{{0, 0, 1}, {0, 0, 2}, {0, 1, 2}} as a multi-set.

2. x,y come from the same generator x̂ ∈ P , and z comes from a different generator ẑ ∈ P

By the first defining condition of pre-admissible set, there is a coordinate 1 ≤ i ≤ k such that
w(x̂i) < w(ẑi). This means there are strictly more zero coordinates in ϕ(x̂i) than in ϕ(ẑi). A
simple case analysis then shows that one of j ∈ {3i, 3i+1, 3i+2} must be such that {xj , yj , zj}
equals one of {{0, 0, 1}, {0, 0, 2}, {0, 1, 2}} as a multi-set. Specifically:

• w(ẑi) = 0 is impossible as 0 ≤ w(x̂i) < w(ẑi);

• w(ẑi) = 1 implies that x̂i = 0 and ẑi ∈ {1, 2}, so there will be a coordinate with values
{0, 0, 1} or {0, 0, 2};

• w(ẑi) = 2 implies that x̂i ∈ {0, 1, 2} and ẑi ∈ {3, 4}, and it is easy to check that there
will be a coordinate with values {0, 0, 1}, {0, 0, 2}, or {0, 1, 2};

• w(ẑi) = 3 implies that x̂i ∈ {0, 1, 2, 3, 4} and ẑi ∈ {5, 6}. If x3i:3(i+1) and y3i:3(i+1) both
equal 0 in some coordinate j, in that coordinate we have {xj , yj , zj} ∈ {{0, 0, 1}, {0, 0, 2}}.
Otherwise we will always have a coordinate in which {xj , yj , zj} = {0, 1, 2}.

3. x,y, z come from different generators x̂, ŷ, ẑ ∈ P

By the second defining condition of pre-admissible set, there is a coordinate 1 ≤ i ≤ k such
that {x̂k, ŷk, ẑk} equals (as a multi-set) one of the 49 possibilities in Equation 7. It is a routine
(but tedious unless automated) check to verify that in each of the 49 possibilities, taking any
three elements from the three respective orbits guarantees a coordinate whose elements equal
one of {{0, 0, 1}, {0, 0, 2}, {0, 1, 2}} as a multi-set.

E More details

E.1 Hyperparameters

Table E.2 provides the values of all the hyperparameters in FunSearch. Only the evaluator pa-
rameters are problem-dependent, as evaluating a candidate solution requires a different amount of
resources in different problems. The values of evaluator hyperparameters provided in Table E.2 are
the default values used for the cap set problem; we set some of them differently for some of the other
problems:
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• For admissible sets (Section 2.1), we set the timeout to 120 seconds and the memory limit to
5 GB.

• For bin packing (Section 2.2), the timeout is 300 seconds and the memory limit is 5 GB.
• For the problem of Shannon capacity of cycle graphs (Appendix B.1), the timeout is 90 seconds.
For the experiments on C9, the timeout is 900 seconds, the memory limit is 64 GB, and the
number of evaluators is 280.

• For the corners problem (Appendix B.2), the timeout is 200 seconds and the number of eval-
uators is 420.

Hyperparameter Value

Samplers Number of samplers 15
Number of generated samples per prompt 4
LLM sampling temperature 1.0
LLM nucleus sampling probability 0.95

Evaluators Number of evaluators 140
Timeout (in seconds) 30
Memory limit (in GB) 2

Evolutionary algorithm Number of previous programs per prompt (k in Section 1) 2
Number of islands (m in Appendix A.1) 10
Reset time for islands (in hours) 4
Initial temperature for cluster probabilities (T0 in Eq. 1) 0.1
Temperature period for cluster probabilities (N in Eq. 1) 30 000
Temperature for program probabilities (Tprogram in Appendix A.1) 1.0

Table E.2: FunSearch hyperparameters.

E.2 Explicit construction of a size-512 cap set in Z8
3

Once FunSearch discovered a priority function Z8
3 → R that leads to a size-512 cap set in Z8

3

(see Figure 4 b) we also looked at the cap set itself, as a sequence of 512 length-8 vectors over Z3.
To our surprise this set of vectors exhibited some obvious regularities: most apparently, the first
128 vectors contained no 0 entries. Note that a cap set is in principle an unordered set, and it is
only thanks to searching in function space that in the particular ordering found by FunSearch these
full-weight vectors appeared as the first 128 entries, rather than being scattered throughout the set.
This initial observation prompted us to analyse the set further. It was straightforward to determine
that the aforementioned 128 full-weight vectors were followed by 256 vectors of weight 4, and the set
was completed by 128 vectors of weight 5 (the weight of a vector is its number of nonzero entries).

In all three cases w ∈ {8, 4, 5} of weight-w vectors, the cap set does not contain all possible vectors
of that weight; for example it contains precisely half of all possible full weight (w = 8) vectors. It
was a natural question to understand what half this is. If we only had the set of 128 vectors to
look at, this might be a more difficult question to answer (likely requiring open-ended exploratory
analysis on these vectors to understand which are included and which are not). However, we also
had the option to refer back to the priority function discovered by FunSearch in order to get a hint
of what rules are being used in determining which vector to include and which to exclude. (This
is only complicated by the fact that we also exclude high-priority vectors that would invalidate the
cap set). The source code of Figure 4 (b) reveals that the priority of a vector el heavily depends on
which of the “reflection” equalities el[1] == el[-1], el[2] == el[-2], el[3] == el[-3] hold.
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This prompted us to introduce the notion of reflections, which counts how many of these equalities
hold, and we found that the cap set contains precisely those full-weight vectors that have at least
two reflections.

We then noticed that the notion of reflections is also useful to describe which vectors are included
in the weight-4 and weight-5 portions of the cap set, although in those cases additional conditions
needed to be added (we obtained these by further analysing the included vectors). Figure 4 (c)
shows the resulting stand-alone function that explicitly describes the 512 vectors that form a cap
set in Z8

3.
The construction reveals that the cap set can be constructed as the union of four 128-element

sets, each with a different defining property. For example, the first set contains a specific half of all
vectors without a 0 entry, whereas the second set contains all vectors whose nonzero entries appear in
4 specific coordinates. These ideas are strikingly similar to the construction of the Hill cap [30, 31],
which results in the optimal 112-cap in Z6

3. See Figure E.23 for a comparison of these constructions
in source code space. This observation offers the prospect of studying whether constructions like
these generalize to higher dimensions n.
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def get_capset(n: int) -> list[tuple[int, ...]]:
"""Build a size-112 cap set in n=6 dimensions."""
V = np.array(list(itertools.product(range(3),

repeat=n)), dtype=np.int32)↪→
reflections = lambda v: sum(1 for i in range(n //

2) if v[i] == v[n - 1 - i])↪→

# First we list 2^(n-1) full-weight vectors with 1
or 3 reflections.↪→

full_support_vectors = [
v for v in V
if np.count_nonzero(v) == n # Full weight.
and reflections(v) in [1, 3]]

# Then we list half-support vectors with allowed
support.↪→

allowed_supports = [
(0, 1, 2), (0, 1, 3), (0, 2, 4), (0, 3, 5),
(0, 4, 5), (1, 2, 5), (1, 3, 4), (1, 4, 5),
(2, 3, 4), (2, 3, 5)]

half_support_vectors = [
v for v in V
if tuple(i for i in range(n) if v[i] != 0) in

allowed_supports]↪→

return full_support_vectors + half_support_vectors

def get_capset(n: int) -> list[tuple[int, ...]]:
"""Build a size-512 cap set in n=8 dimensions."""
V = np.array(list(itertools.product(range(3),

repeat=n)), dtype=np.int32)↪→
reflections = lambda v: sum(1 for i in range(1, n

// 2) if v[i] == v[-i])↪→

# First we list 2^(n-1) full-weight vectors with 2
or 3 reflections.↪→

full_support_vectors = [
v for v in V
if np.count_nonzero(v) == n # Full weight.
and reflections(v) in [2, 3]]

# Then we list half-support vectors with allowed
support and <= 1 reflections.↪→

allowed_supports = [
(0, 1, 2, 3), (0, 1, 2, 5), (0, 1, 2, 7),
(0, 1, 2, 6), (0, 1, 3, 7), (0, 1, 6, 7),
(0, 3, 6, 7), (0, 5, 6, 7), (0, 1, 5, 7),
(1, 3, 4, 6), (1, 4, 5, 6), (0, 2, 3, 6),
(2, 3, 4, 7), (2, 4, 5, 7), (0, 2, 6, 7),
(0, 2, 5, 6), (1, 2, 4, 7), (1, 2, 4, 6),
(1, 3, 4, 7), (1, 4, 6, 7), (1, 4, 5, 7),
(2, 3, 4, 6), (2, 4, 6, 7), (2, 4, 5, 6)]

half_support_vectors = [
v for v in V
if tuple(i for i in range(n) if v[i] != 0) in

allowed_supports↪→
and reflections(v) <= 1]

# Finally we add 128 weight-5 vectors with <= 1
reflections.↪→

allowed_zeros = [
(0, 4, 7), (0, 2, 4), (0, 1, 4), (0, 4, 6),
(1, 2, 6), (2, 6, 7), (1, 2, 7), (1, 6, 7)]

weight5_vectors = [
v for v in V
if np.count_nonzero(v) == 5 # Weight is 5.
and tuple(i for i in range(n) if v[i] == 0) in

allowed_zeros↪→
and reflections(v) <= 1
and (v[1]*v[7]) % 3 != 1 and (v[2]*v[6]) % 3

!= 1]↪→

return full_support_vectors + half_support_vectors
+ weight5_vectors↪→

Figure E.23: Juxtaposition of explicit constructions of largest known cap sets in n = 6 dimensions
(left) and n = 8 dimensions (right). The construction on the left was hand-constructed based on
descriptions of the Hill cap in the literature [31]. The cap set of size 512 in n = 8 dimensions was
discovered by FunSearch, and the cleaned up explicit construction showed on the right was obtained
by us through the process described in Appendix E.2.
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E.3 Conception of symmetric admissible sets

def priority(el: tuple[int, ...], n: int, w: int) -> float:

score = 0.0

for i in range(n):

if el[i] == 1:

score -= 0.9 ** ( i % 4 )

if el[i] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 1 and el[i - 4] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] != 0:

score -= 0.98 ** (30 - ( i % 4 ))

return score

(a) First discovered function.

def priority(el: tuple[int, ...], n: int, w: int) -> float:

score = 0.0

for i in range(n):

if el[i] == 1:

score -= 0.9 ** ( i % 4 )

if el[i] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 1 and el[i - 4] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] != 0:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

score -= 6.3

if el[i] == 2 and el[i - 4] == 2 and el[i - 8] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 1:

score -= 6.3

if el[i] == 2 and el[i - 4] == 0 and el[i - 8] == 2:

score -= 6.3

if el[i] == 1 and el[i - 4] == 1 and el[i - 8] == 0:

score -= 2.2

return score

(b) Further evolved to increase interpretabilty.

Figure E.24: Two priority functions discovered by FunSearch, both of which yield a full-size
I(12, 7) admissible set. The function on the left was discovered first. Afterwards we used FunSearch
to evolve this function further, using a modified scoring function that we hypothesised would lead
to better interpretability. This resulted in the function shown on the right. This longer function
reveals more clearly the regularities of how the function uses the loop index i and which entries of
el are accessed jointly.

Once FunSearch discovered a priority function {0, 1, 2}12 → R that leads to a full-size I(12, 7)
admissible set A (see Figure E.24a), we were curious to understand what this function is doing. We
proceeded in two interconnected ways. First, we visually inspected the source code, and started
noticing a few interesting features (more on these below). Second, we leveraged the flexibility of
FunSearch to optimise an arbitrary numerical property of the program, and used FunSearch to
further evolve the discovered program in such a way that it becomes more interpretable. Specifically,
we quantified interpretability as the negative of the number of high-scoring elements el that do not
get included in the constructed admissible set A (because they would violate a defining condition of
admissible set). More formally, the interpretability score sI(A) and total score s(A) of a program
producing an admissible set A in this modified setting was

sI(A) :=
∣∣∣{el ∈ {0, 1, 2}n | el ̸∈ A ∧ ∃x ∈ A s.t. priority(x, n,w) < priority(el, n, w)

}∣∣∣ (9)

s(A) := |A| − 10−6sI(A) (10)

The intuition was that a priority function that describes the admissible set A more tightly, relying
less on filtering away high-scoring but invalid elements, would be more interpretable. The resulting
function is shown in Figure E.24b, and visually inspecting it has helped us notice more easily the
following features of this program:
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1. As the function loops through the n coordinates i ∈ {0, 1, . . . , 11}, apart from indexing into
the vector el the value of i is only accessed through its modulus i % 4, which is constant
within each of the four coordinate groups {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11}.

2. Each if condition in the function accesses between one and three entries of el, and thanks to
how negative indices wrap around in Python, the set of accessed elements is always contained
in one of the four coordinate groups {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11}.

3. Since the priority is computed by i looping through all n coordinates, the resulting priority is
actually invariant under cyclically permuting entries of el within any of the aforementioned
four coordinate groups (cf. Appendix D).

The final observation may not automatically guarantee that our discovered I(12, 7) admissible set A
is invariant under cyclically permuting coordinates within each four coordinate groups, as some high-
priority elements could still potentially get skipped due to violating the admissible set condition, and
thus breaking the invariance. However, this turned out not to be the case here — we verified that
A is in fact invariant under this symmetry, which we formalized as Definition 2, calling admissible
sets possessing this invariance symmetric.

We then hypothesised that large symmetric admissible sets may exist for other values of n = 3k
and 1 ≤ w < n. We modified the program skeleton in the program specification that we pass to
FunSearch such that it directly searches for symmetric admissible sets only (see Figure C.10). This
is a more restricted but also much smaller search space, and we quickly discovered that symmetric
admissible sets do in fact exist for all choices of n ∈ {3, 6, 9, 12} and each 1 ≤ w < n. This encouraged
us to try searching for even larger symmetric admissible sets, resulting in a full-size I(15, 10) and a
non-full-size admissible set in A(21, 15). These imply further improvements to the lower bound on
the cap set capacity, as described in the main paper.

E.4 Bin packing datasets

OR-Library datasets. We evaluate FunSearch on the well-known OR-Library bin packing bench-
marks [32], using the binpack1, binpack2, binpack3 and binpack4 datasets, each containing 20 bin
packing instances, with 120, 250, 500, and 1 000 items, respectively. These instances were generated
by sampling item sizes uniformly from the interval [20, 100]. For all datasets, the capacity of the bins
is set to 150. To evolve a heuristic with FunSearch, we generated a training dataset of 20 instances
each with 120 items sampled from [20, 100] (similarly to the binpack1 instances). To evaluate our
heuristic during training, we also generated a validation dataset of 20 instances of 250 items sampled
from [20, 100] (similarly to the binpack2 instances). We then select the best heuristics with respect
to the validation dataset and test them on the binpack1 to binpack4 instances.

Weibull datasets. The Weibull datasets were generated by sampling from a Weibull(45, 3) distri-
bution. The parameters of this distribution were chosen based on standard values in the literature
[33]. We further clipped the samples at 100 and rounded all items sizes to the nearest integer in
{1, 2, . . . , 100}. We generated a training dataset containing 5 instances each with 5 000 items and
a validation dataset with the same number of instances and items. To test our learned heuristics,
we generated test sets of 5 instances with 5 000 items, 5 instances of 10 000 items and 1 instance of
100 000 items (referred to as Weibull 5k, Weibull 10k and Weibull 100k respectively).
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E.5 Bin packing visualizations

As noted in the main paper, instead of packing items into bins with the least capacity (like best
fit), the FunSearch heuristics typically assign items to least capacity bins only if the fit is very tight
after placing the item. Otherwise, the item is placed in another bin which would leave more space
after the item is placed. This strategy avoids leaving small gaps in bins that are unlikely to ever be
filled. For example, for the OR datasets, the minimum item size is 20 and the best fit heuristic may
leave gaps of size 18 and 19 which will never be filled. In contrast, FunSearch tends to avoid such
gaps (see Figure E.25 for a visualization of an example).

Figure E.25: Packing solutions on u120 07 from the OR1 bin packing dataset sorted by remaining
capacity. Left : Best fit. Right : FunSearch (the heuristic in Figure C.13). As can be seen, best fit
leaves several gaps that are slightly smaller than the smallest items, leading to worse performance.

F Implementation of FunSearch

x15 x140

get prompt

analyse

register program

Sampler Evaluator

ProgramsDB

Figure F.26: FunSearch graph.

In this section we present a pseudocode implementation of FunSearch. The function in Algo-
rithm F.1 constructs the graph in Figure F.26 and starts the whole procedure.
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Algorithm F.1 Function that launches a FunSearch experiment.

def main (specification, tests inputs,num samplers = 15,num evaluators = 140)
1: function to evolve, function to run = extract function names (specification)

# We create a singleton ProgramsDB.
2: programs db = ProgramsDB (function to evolve)

# We create a set of evaluators.
3: evaluators = []
4: for i ∈ {1, . . . ,num evaluators} do
5: evaluators. append (Evaluator (programs db, function to run, tests inputs))

# And we create a set of samplers.
6: samplers = []
7: for i ∈ {1, . . . ,num samplers} do
8: samplers. append (Sampler (programs db, evaluators))

# We send the initial implementation in the specification for analysis by one of the evaluators.
9: evaluators[0] . analyse (specification)

# Finally we start calling the sample function of all samplers in parallel.
10: for sampler ∈ samplers do
11: sampler. sample ()

This function uses 3 classes of objects: Sampler, Evaluator and ProgramDB. For each of those,
we present its pseudocode implementation in Appendix F.1, Appendix F.2 and Appendix F.3 re-
spectively.

F.1 Sampler

Class for sampling using an LLM.

Algorithm F.2 Constructor of the Sampler class.

def constructor (self,programs db, evaluators, samples per prompt = 4)
1: self.programs db = programs db
2: self. evaluators = evaluators
3: self. llm = LLM(samples per prompt)

Algorithm F.3 Getting prompts and sampling in an endless loop.

def sample (self)
1: while True do
2: prompt, island id = self.programs db. get prompt ()
3: samples = self. llm.draw samples (prompt)
4: for sample ∈ samples do
5: pick at random (self. evaluators) . analyse (sample, island id)
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F.2 Evaluator

Class that analyses functions generated by LLMs and send the results to the Programs Database.
The Evaluator has access to a sandbox to run programs. The sandbox is needed for two reasons.
The first reason is to prevent the given program doing things we do not want it to do, like connecting
to the internet or using too much memory. The second is to stop the program after a given timeout,
so that we do not need to wait for a program that takes too long, or even infinity. The sandbox
returns two outputs. The first one is the actual output obtained when running the given program,
and the second one is a boolean that indicates weather the program runs correctly, i.e. if it did not
contain syntactic or runtime errors. If the program executed correctly, its actual output is assumed
to be the numerical score of the corresponding solution, or ∅ if the solution was invalid (cf the main
functions in Figure 2).

Algorithm F.4 Constructor of the Evaluator class.

def constructor (self,programs db, function to run, test inputs, timeout seconds = 30)
1: self.programs db = programs db
2: self. function to run = function to run
3: self. test inputs = test inputs
4: self. T = timeout seconds

Algorithm F.5 Analyses a given program.

def analyse (self,program, island id)
1: scores per test = {}
2: for test input ∈ self. test inputs do
3: test output, runs ok = sandbox run (program, self. function to run, test input, self. T )
4: if runs ok and not calls ancestor (program) and test output ̸= ∅ then
5: scores per test[test input] = test output

# If at least it passed one test, we send it to the ProgramsDB.
6: if scores per test ̸= {} then
7: self.programs db. register program (program, island id, scores per test)

F.3 ProgramsDB

Class that stores and serves the programs. It uses a set of instances from the class Island whose
pseudocode is shown in Appendix F.3.1. In turn, that class relies on using instances of the class
Cluster, whose pseudocode is in Appendix F.3.2.
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Algorithm F.6 Constructor of the ProgramsDB class.

def constructor(self, function to evolve,number islands = 10, reset period = 4 ∗ 60 ∗
60, functions per prompt = 2, temperature = 0.1, temperature period = 30000)

1: self. k = functions per prompt
2: self. T0 = temperature
3: self. N = temperature period
4: self. function to evolve = function to evolve
5: self. islands = []
6: for i ∈ {1, . . . ,number islands} do
7: self. islands. append (Island (self. function to evolve, self. k, self. T0, self. N))

8: self. islands to reset = number islands /2
9: self.best score per island = [−∞] ∗ number islands

10: self.best program per island = [∅] ∗ number islands
11: self.best scores per test per island = [∅] ∗ number islands
12: self. reset period = reset period
13: self. last reset time = time now ()

Algorithm F.7 Returns a new prompt.

def get prompt (self)
1: island id = pick at random ({0, . . . , | self. islands | − 1})
2: return self. islands[island id]. get prompt () , island id

Algorithm F.8 Registers the given program into the given island.

def register program in island (self,program, island id, scores per test)
1: self. islands[island id]. register program (program, scores per test)
2: score = reduce score (scores per test)
3: if score > self.best score per island[island id] then
4: self.best program per island[island id] = program
5: self.best score per island[island id] = score
6: self.best scores per test per island[island id] = scores per test

32



Algorithm F.9 Registers the given program into the database.

def register program (self,program, island id, scores per test)
1: if island id = ∅ then

# This is a program added at the beginning, so adding to all islands
2: for island id ∈ {0, . . . , | self. islands | − 1} do
3: self. register program in island (program, island id, scores per test)

4: else
5: self. register program in island (program, island id, scores per test)

# Check whether it is time to reset some islands
6: if time now ()− self. last reset time > self. reset period then
7: last reset time = time now ()
8: self. reset islands ()

Algorithm F.10 Restarts the population of a proportion of the islands.

def reset islands (self)

# We sort best scores after adding minor noise to break ties.
1: sorted islands scores = argsort

(
add gaussian noise

(
self.best score per island, 10−6

))
2: reset islands ids = []
3: keep islands ids = []
4: for i ∈ 0, . . . , | sorted islands scores | − 1 do
5: if i < self. islands to reset then
6: reset islands ids. apppend (sorted islands scores[i])
7: else
8: keep islands ids. append (sorted islands scores[i])

9: for island id ∈ reset islands ids do
10: self. islands[island id] = Island (self. function to evolve, self. k, self. T0, self. N)
11: self.best score per island[island id] = −∞
12: founder island id = pick at random (keep islands ids)
13: founder = self.best program per island[founder island id]
14: founder scores = self.best scores per test per island[founder island id]
15: self. register program in island (founder, island id, founder scores)
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F.3.1 Island

Algorithm F.11 Constructor of the Island class.

def constructor (self, function to evolve, functions per prompt, temperature, temperature period)
1: self. function to evolve = function to evolve
2: self. functions per prompt = functions per prompt
3: self. clusters = {}
4: self. T0 = temperature
5: self. N = temperature period
6: self. template = ∅
# Total number of programs registered on this island.
7: self. n = 0

Algorithm F.12 Adds the given program into the island.

def register program (self,program, scores per test)
1: if not self. template then
2: self. template = extract template from program (program)

3: if scores per test /∈ self. clusters then
4: score = reduce score (scores per test)
5: self. clusters[scores per test] = Cluster (score,program)
6: else
7: self. clusters[scores per test].programs. append (program)

8: self. n = self. n+ 1
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Algorithm F.13 Builds and returns a prompt.

def get prompt (self)
1: s = []
2: for cluster ∈ self. clusters do
3: s . append (cluster. score)

4: Tcluster = self. T0 ·
(
1− self. n mod self. N

self. N

)
5: pi =

exp(si/Tcluster)∑
i′ exp(si′/Tcluster)

# At the beginning we might not have enough clusters.
6: functions per prompt = min (| self. clusters |, self. functions per prompt)
7: chosen clusters = pick at random (self. clusters, p, functions per prompt)
8: programs = []
9: scores = []

10: for cluster ∈ chosen clusters do
11: programs. append (cluster. sample program ())
12: scores. append (cluster. score)

13: sorted programs = []
14: indices = argsort (scores)
15: for index ∈ indices do
16: sorted programs. append (programs[index])

17: return self. generate prompt (sorted programs)

Algorithm F.14 Creates a prompt containing a sequence of function implementations.

def generate prompt (self, implementations)
1: prompt = self. template
2: for i ∈ {0, . . . , | implementations | − 1} do
3: new function name = get versioned function name (self. function to evolve, i)

# Rename the function, including any internal recursive calls, and update its docstring.
4: new implementation = rename function (implementations[i],new function name)
5: prompt = string concatenation ([prompt,new implementation],double line)

# Create the header of the function to be generated by the LLM.
6: version generated = | implementations |
7: new function name = get versioned function name (self. function to evolve, version generated)
8: header = make header like (implementations[0],new function name)

# Rename the call to the target function.
9: prompt = rename function calls (prompt, self. function to evolve,new function name)

10: prompt = string concatenation ([prompt, implementation],double line)
11: return prompt
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F.3.2 Cluster

Algorithm F.15 Constructor of a Cluster.

def constructor (self, score,first program)
1: self. score = score
2: self.programs = [first program]

Algorithm F.16 Samples a program giving higher probability to shorter programs.

def sample program (self, Tprogram = 1)
1: ℓ = []
2: for program ∈ self.programs do
3: ℓ . append (− length (program))

4: ℓ̃i =
ℓi−mini′ ℓi′

maxi′ ℓi′+10−6

5: pi =
exp(ℓ̃i/Tprogram)∑
i′ exp(ℓ̃i′/Tprogram)

6: return pick at random (self.programs, p)
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