We want to hear from you!Take our 2021 Community Survey!
This site is no longer updated.Go to react.dev

Implementation Notes

This section is a collection of implementation notes for the stack reconciler.

It is very technical and assumes a strong understanding of React public API as well as how it’s divided into core, renderers, and the reconciler. If you’re not very familiar with the React codebase, read the codebase overview first.

It also assumes an understanding of the differences between React components, their instances, and elements.

The stack reconciler was used in React 15 and earlier. It is located at src/renderers/shared/stack/reconciler.

Video: Building React from Scratch

Paul O’Shannessy gave a talk about building React from scratch that largely inspired this document.

Both this document and his talk are simplifications of the real codebase so you might get a better understanding by getting familiar with both of them.

Overview

The reconciler itself doesn’t have a public API. Renderers like React DOM and React Native use it to efficiently update the user interface according to the React components written by the user.

Mounting as a Recursive Process

Let’s consider the first time you mount a component:

const root = ReactDOM.createRoot(rootEl);
root.render(<App />);

root.render will pass along to the reconciler. Remember that is a React element, that is, a description of what to render. You can think about it as a plain object:

console.log(<App />);
// { type: App, props: {} }

The reconciler will check if App is a class or a function.

If App is a function, the reconciler will call App(props) to get the rendered element.

If App is a class, the reconciler will instantiate an App with new App(props), call the componentWillMount() lifecycle method, and then will call the render() method to get the rendered element.

Either way, the reconciler will learn the element App “rendered to”.

This process is recursive. App may render to a , Greeting may render to a

), or both.

The DOM nodes produced by the child components will be appended to the parent DOM node, and recursively, the complete DOM structure will be assembled.

Note:

The reconciler itself is not tied to the DOM. The exact result of mounting (sometimes called “mount image” in the source code) depends on the renderer, and can be a DOM node (React DOM), a string (React DOM Server), or a number representing a native view (React Native).

If we were to extend the code to handle host elements, it would look like this:

function isClass(type) {
  // React.Component subclasses have this flag
  return (
    Boolean(type.prototype) &&
    Boolean(type.prototype.isReactComponent)
  );
}

// This function only handles elements with a composite type.
// For example, it handles  and 

This is working but still far from how the reconciler is really implemented. The key missing ingredient is support for updates.

Introducing Internal Instances

The key feature of React is that you can re-render everything, and it won’t recreate the DOM or reset the state:

root.render(<App />);
// Should reuse the existing DOM:
root.render(<App />);

However, our implementation above only knows how to mount the initial tree. It can’t perform updates on it because it doesn’t store all the necessary information, such as all the publicInstances, or which DOM nodes correspond to which components.

The stack reconciler codebase solves this by making the mount() function a method and putting it on a class. There are drawbacks to this approach, and we are going in the opposite direction in the ongoing rewrite of the reconciler. Nevertheless this is how it works now.

Instead of separate mountHost and mountComposite functions, we will create two classes: DOMComponent and CompositeComponent.

Both classes have a constructor accepting the element, as well as a mount() method returning the mounted node. We will replace a top-level mount() function with a factory that instantiates the correct class:

function instantiateComponent(element) {
  var type = element.type;
  if (typeof type === 'function') {
    // User-defined components
    return new CompositeComponent(element);
  } else if (typeof type === 'string') {
    // Platform-specific components
    return new DOMComponent(element);
  }  
}

First, let’s consider the implementation of CompositeComponent:

class CompositeComponent {
  constructor(element) {
    this.currentElement = element;
    this.renderedComponent = null;
    this.publicInstance = null;
  }

  getPublicInstance() {
    // For composite components, expose the class instance.
    return this.publicInstance;
  }

  mount() {
    var element = this.currentElement;
    var type = element.type;
    var props = element.props;

    var publicInstance;
    var renderedElement;
    if (isClass(type)) {
      // Component class
      publicInstance = new type(props);
      // Set the props
      publicInstance.props = props;
      // Call the lifecycle if necessary
      if (publicInstance.componentWillMount) {
        publicInstance.componentWillMount();
      }
      renderedElement = publicInstance.render();
    } else if (typeof type === 'function') {
      // Component function
      publicInstance = null;
      renderedElement = type(props);
    }

    // Save the public instance
    this.publicInstance = publicInstance;

    // Instantiate the child internal instance according to the element.
    // It would be a DOMComponent for 
or

, // and a CompositeComponent for or

This is not much different from our previous mountComposite() implementation, but now we can save some information, such as this.currentElement, this.renderedComponent, and this.publicInstance, for use during updates.

Note that an instance of CompositeComponent is not the same thing as an instance of the user-supplied element.type. CompositeComponent is an implementation detail of our reconciler, and is never exposed to the user. The user-defined class is the one we read from element.type, and CompositeComponent creates an instance of it.

To avoid the confusion, we will call instances of CompositeComponent and DOMComponent “internal instances”. They exist so we can associate some long-lived data with them. Only the renderer and the reconciler are aware that they exist.

In contrast, we call an instance of the user-defined class a “public instance”. The public instance is what you see as this in the render() and other methods of your custom components.

The mountHost() function, refactored to be a mount() method on DOMComponent class, also looks familiar:

class DOMComponent {
  constructor(element) {
    this.currentElement = element;
    this.renderedChildren = [];
    this.node = null;
  }

  getPublicInstance() {
    // For DOM components, only expose the DOM node.
    return this.node;
  }

  mount() {
    var element = this.currentElement;
    var type = element.type;
    var props = element.props;
    var children = props.children || [];
    if (!Array.isArray(children)) {
      children = [children];
    }

    // Create and save the node
    var node = document.createElement(type);
    this.node = node;

    // Set the attributes
    Object.keys(props).forEach(propName => {
      if (propName !== 'children') {
        node.setAttribute(propName, props[propName]);
      }
    });

    // Create and save the contained children.
    // Each of them can be a DOMComponent or a CompositeComponent,
    // depending on whether the element type is a string or a function.
    var renderedChildren = children.map(instantiateComponent);
    this.renderedChildren = renderedChildren;

    // Collect DOM nodes they return on mount
    var childNodes = renderedChildren.map(child => child.mount());
    childNodes.forEach(childNode => node.appendChild(childNode));

    // Return the DOM node as mount result
    return node;
  }
}

The main difference after refactoring from mountHost() is that we now keep this.node and this.renderedChildren associated with the internal DOM component instance. We will also use them for applying non-destructive updates in the future.

As a result, each internal instance, composite or host, now points to its child internal instances. To help visualize this, if a function component renders a

As the last step, we execute the DOM operations. Again, the real reconciler code is more complex because it also handles moves:

    // ...

    // Process the operation queue.
    while (operationQueue.length > 0) {
      var operation = operationQueue.shift();
      switch (operation.type) {
      case 'ADD':
        this.node.appendChild(operation.node);
        break;
      case 'REPLACE':
        this.node.replaceChild(operation.nextNode, operation.prevNode);
        break;
      case 'REMOVE':
        this.node.removeChild(operation.node);
        break;
      }
    }
  }
}

And that is it for updating host components.

Top-Level Updates

Now that both CompositeComponent and DOMComponent implement the receive(nextElement) method, we can change the top-level mountTree() function to use it when the element type is the same as it was the last time:

function mountTree(element, containerNode) {
  // Check for an existing tree
  if (containerNode.firstChild) {
    var prevNode = containerNode.firstChild;
    var prevRootComponent = prevNode._internalInstance;
    var prevElement = prevRootComponent.currentElement;

    // If we can, reuse the existing root component
    if (prevElement.type === element.type) {
      prevRootComponent.receive(element);
      return;
    }

    // Otherwise, unmount the existing tree
    unmountTree(containerNode);
  }

  // ...

}

Now calling mountTree() two times with the same type isn’t destructive:

var rootEl = document.getElementById('root');

mountTree(<App />, rootEl);
// Reuses the existing DOM:
mountTree(<App />, rootEl);

These are the basics of how React works internally.

What We Left Out

This document is simplified compared to the real codebase. There are a few important aspects we didn’t address:

  • Components can render null, and the reconciler can handle “empty slots” in arrays and rendered output.
  • The reconciler also reads key from the elements, and uses it to establish which internal instance corresponds to which element in an array. A bulk of complexity in the actual React implementation is related to that.
  • In addition to composite and host internal instance classes, there are also classes for “text” and “empty” components. They represent text nodes and the “empty slots” you get by rendering null.
  • Renderers use injection to pass the host internal class to the reconciler. For example, React DOM tells the reconciler to use ReactDOMComponent as the host internal instance implementation.
  • The logic for updating the list of children is extracted into a mixin called ReactMultiChild which is used by the host internal instance class implementations both in React DOM and React Native.
  • The reconciler also implements support for setState() in composite components. Multiple updates inside event handlers get batched into a single update.
  • The reconciler also takes care of attaching and detaching refs to composite components and host nodes.
  • Lifecycle methods that are called after the DOM is ready, such as componentDidMount() and componentDidUpdate(), get collected into “callback queues” and are executed in a single batch.
  • React puts information about the current update into an internal object called “transaction”. Transactions are useful for keeping track of the queue of pending lifecycle methods, the current DOM nesting for the warnings, and anything else that is “global” to a specific update. Transactions also ensure React “cleans everything up” after updates. For example, the transaction class provided by React DOM restores the input selection after any update.

Jumping into the Code

  • ReactMount is where the code like mountTree() and unmountTree() from this tutorial lives. It takes care of mounting and unmounting top-level components. ReactNativeMount is its React Native analog.
  • ReactDOMComponent is the equivalent of DOMComponent in this tutorial. It implements the host component class for React DOM renderer. ReactNativeBaseComponent is its React Native analog.
  • ReactCompositeComponent is the equivalent of CompositeComponent in this tutorial. It handles calling user-defined components and maintaining their state.
  • instantiateReactComponent contains the switch that picks the right internal instance class to construct for an element. It is equivalent to instantiateComponent() in this tutorial.
  • ReactReconciler is a wrapper with mountComponent(), receiveComponent(), and unmountComponent() methods. It calls the underlying implementations on the internal instances, but also includes some code around them that is shared by all internal instance implementations.
  • ReactChildReconciler implements the logic for mounting, updating, and unmounting children according to the key of their elements.
  • ReactMultiChild implements processing the operation queue for child insertions, deletions, and moves independently of the renderer.
  • mount(), receive(), and unmount() are really called mountComponent(), receiveComponent(), and unmountComponent() in React codebase for legacy reasons, but they receive elements.
  • Properties on the internal instances start with an underscore, e.g. _currentElement. They are considered to be read-only public fields throughout the codebase.

Future Directions

Stack reconciler has inherent limitations such as being synchronous and unable to interrupt the work or split it in chunks. There is a work in progress on the new Fiber reconciler with a completely different architecture. In the future, we intend to replace stack reconciler with it, but at the moment it is far from feature parity.

Next Steps

Read the next section to learn about the guiding principles we use for React development.

Is this page useful?Edit this page