
RDF Dataset Canonicalization

Rachel Arnold and Dave Longley
Digital Bazaar, Inc.

October 9, 2020

Contents

1 Introduction 1
1.1 “Mentions” as the Edges of an RDF Dataset . 3

2 Encoding Information Connected to a Blank Node 4
2.1 First Degree Hashes . 4
2.2 N -Degree Hashes . 5

2.2.1 Related Hashes . 6
2.2.2 Gossip Paths . 7
2.2.3 Computing N -Degree Hashes at a High Level 8
2.2.4 The Terms of a Node’s Data to Hash . 10
2.2.5 Encoding Gossip Paths with the Hash N -Degree Quads Algorithm 12
2.2.6 Distributing Canonical Labels Via N -Degree Hashes 24

3 The Canonical Labeling of URDNA2015 24
3.1 RDF Dataset Comparison . 26
3.2 The Case of Equal N -Degree Hashes . 26
3.3 URDNA2015 Terminates . 31

A Notation Index 32

1 Introduction

Given a graph, one can determine whether two nodes are equivalent, that is have the same rela-
tionships to all others nodes in the graph, by comparing their identifiers. But what if the nodes
do not have identifiers? That is, what if the nodes are blank? In this case, one must explore the
connections associated with the blank nodes throughout the entire graph to determine whether the
nodes are equivalent. This is called the graph isomorphism problem.

This paper proves the correctness of the Universal RDF Dataset Normalization Algorithm
2015 (URDNA2015) [3], an algorithm that has been in use for several years but has not been
formally proved until this paper. URDNA2015 explores the connections of blank nodes throughout
the graph and uniquely determines a method of assigning canonical identifiers to each blank node.
With the blank nodes canonically labeled, one can then compare these labels to determine whether

1

two nodes are equivalent.

More specifically, URDNA2015 canonically labels an RDF dataset–or collection of RDF graphs. An
RDF graph is a collection of triples < s, p, o > that can be depicted via a directed edge from the
subject s to the object o (Figure 1). The predicate p indicates the type of edge from s to o.

s o
p

Figure 1

In [2], an RDF dataset D is defined as a collection of RDF graphs that comprises:

• Exactly one default graph, being an RDF graph. The default graph does not have a name
and may be empty.

• Zero or more named graphs. Each named graph is a pair consisting of an IRI or a blank node
(the graph name), and an RDF graph. Graph names are unique within an RDF dataset.

In URDNA2015, an RDF dataset D is represented as a set of quads of the form < s, p, o, g > where
the graph component g is empty if and only if the triple < s, p, o > is in the default graph. Quads
in the default graph are denoted < s, p, o,− >, where “−” is used to indicate an empty graph
component. This paper will also consider an RDF dataset to be a set of quads. We will ultimately
demonstrate that two RDF datasets are the same modulo blank nodes, or isomorphic, if and only
if they return the same canonically labeled list of quads via URDNA2015.

URDNA2015 consists of several sub-algorithms. These sub-algorithms are introduced throughout
the exposition that follows, translated into the notation and language of this paper. For reference, a
notation index is provided in Appendix A. Below we give a very high level summary of URDNA2015;
the algorithm is presented in its entirety in Section 3. The specification can be viewed here.

URDNA2015 (High Level)

1. Initialization. Initialize the state needed for the rest of the algorithm.

2. Compute first degree hashes. Compute the first degree hash for each blank node
in the dataset using the Hash First Degree Quads (HF) Algorithm.

3. Canonically label unique nodes. Assign canonical identifiers via the Issue Identifier
algorithm, in lexicographical order, to each blank node whose first degree hash is unique.

4. Compute N -degree hashes for non-unique nodes. For each repeated first degree
hash (proceeding in lexicographical order), compute the N -degree hash via the Hash
N -Degree Quads (HN) algorithm of every unlabeled blank node that corresponds to the
given repeated hash.

5. Canonically label remainURDNA2015ing nodes. In lexicographical order of the
N -degree hashes, issue canonical identifiers to each corresponding blank node using the
Issue Identifier algorithm. Later, we show that if more than one node produces the
same N -degree hash, the order in which these nodes receive a canonical identifier does
not matter.

2

https://json-ld.github.io/normalization/spec/#normalization-algorithm https://json-ld.github.io/normalization/spec/

1.1 “Mentions” as the Edges of an RDF Dataset

6. Finish. Return the normalized dataset.

Throughout the algorithm, blank nodes will be issued identifiers via the Issue Identifiers algo-
rithm. Some blank nodes may be issued temporary identifiers by this algorithm prior to being
assigned a canonical identifier.

The Issue Identifier Algorithm

This algorithm issues a new blank node identifier for a given existing blank node identifier.
It also updates state information that tracks the order in which new blank node identifiers
were issued.

This algorithm takes an identifier issuer, denoted I, and an existing blank node identifier n
as inputs. The output is a new issued identifier I(n).

1. If there is already an issued identifier for n in the issued identifiers list for I,
return it.

2. Generate I(n) by concatenating identifier prefix with the string value of
identifier counter.

3. Append an item to the issued identifiers list for I that maps n to I(n).

4. Increment identifier counter.

5. Return I(n).

In this paper, we denote the issued label I(n) by cn if it is a canonical identifier or by bn if it
is a temporary identifier.

1.1 “Mentions” as the Edges of an RDF Dataset

Because a graph name in a dataset may be blank, the appearance of a blank identifier in the graph
component of a quad must be characterized when determining a canonical labeling. Given the quad
< s, p, o, g >, we cannot use the term “edge” to describe the relationship between s and g or the re-
lationship between o and g (as we can when relating s and o). To include this new relationship type,
we use the term mention instead of edge. In this way, mentions can be physical edges in a graph or
they can simply indicate that two nodes appear in a quad together when one is in the graph position.

Each quad in a dataset D describes a set of mentions between the nodes in its components. We say
that a quad mentions a node n if n is an entry in one of its components. The set of all quads
in D that mention a node n is called its mention set, denoted Qn.

Two nodes n and n′ are related if they appear together in the same quad; that is, Qn ∩Qn′ 6= ∅.
Related nodes necessarily have a mention “between them.” Mentions are “directed” in that they are
described from each incident node’s perspective. A mention m from n1 to n2 described by the quad
q indicates the component of q in which n2 is mentioned. For example, given q =< n1, p, n2, n3 >,

3

we could use the mention m1 to indicate “n1 mentions n2 in the object component of q” and the
mention m2 to indicate “n2 mentions n1 in the subject component of q.”

2 Encoding Information Connected to a Blank Node

To determine a canonical labeling, the URDNA2015 considers the information connected to each
blank node. Nodes with unique first degree information can be issued a canonical identifier imme-
diately via the Issue Identifier algorithm. When a node has non-unique first degree information, it
is necessary to determine all information that is connected to it transitively throughout the entire
dataset. Section 2.1 defines a node’s first degree information via its first degree hash.

Hashes are computed from the information of each blank node. In particular, these hashes encode
the mentions incident to each blank node. The hash of a string s, denoted h(s), is the lower-
case, hexidecimal representation of the result of passing s through a cryptographic hash function.
URDNA2015 uses the hash algorithm SHA-256.

When performing the steps required by URDNA2015, it is helpful to track the state in a data
structure. This is called the normalization state and it consists of three parts.

1. blank node to quads map - A data structure that maps a blank node identifier n to its
mention set Qn.

2. hash to blank nodes map - A data structure that maps a hash to a list of blank node
identifiers. In Section 2.2.1 we denote this list by [x] where x is a related hash.

3. canonical issuer - An identifier issuer, initialized with the prefix _:c14n, for issuing canon-
ical blank node identifiers.

When calling sub-algorithms, the normalization state is often passed.

2.1 First Degree Hashes

To determine whether the first degree information of a node n is unique, a hash is assigned to its
mention set, Qn. Specifically, the first degree hash of a blank node n, denoted hf (n), is the hash
that results from the Hash First Degree Quads (HF) algorithm when passing n. Nodes with
unique first degree hashes have unique first degree information.

Computing hf (n) requires the serialization in N-quads format [1] of all quads in the mention set
of n, Qn. Prior to serializing a quad q ∈ Qn, the algorithm makes a replacement for each blank
component in q. Each component containing n is replaced with a and all other blank components
different from n are replaced with z (See step 3.1.1.1 of HF). By first replacing each blank node
with z or a, HF distinguishes between blank and nonblank components in the quads of Qn. See
Example 2.1 for an illustration of this rule.

Each quad in the replacement list is serialized. Then, the serialized list is lexicographically sorted,
concatenated, and hashed. This hash is the first degree hash of n, hf (n). The set of all first degree
hashes, denoted HF is called the first degree hash list of D.

4

2.2 N -Degree Hashes

Example 2.1. When executing HF on the blank node n, HF step 3.1.1.1 makes a special replacement
for each quad in Qn that mentions n. Table 1 illustrates a sample mention set Qn and its replacement
under this rule. Note that n1 and n2 are blank nodes, whereas s, o, and g are nonblank identifiers.

Qn Replacement
< n, p, n1, g > < a, p, z, g >
< n, p, n1, n2 > < a, p, z, z >
< n2, p, n, n > < z, p, a, a >
< s, p, n, g > < s, p, a, g >
< n1, p, o, n > < z, p, o, a >
< n1, p, n, n1 > < z, p, a, z >

Table 1: n1 and n2 are blank nodes distinct from n. s, o, and g are nonblank identifiers.

The Hash First Degree Quads (HF) Algorithm

This algorithm takes the normalization state and a reference blank node identifier n as inputs.

1. Initialize nquads to an empty list. It will be used to store quads in N-Quads format.

2. Get the list of quads Qn associated with the reference blank node identifier n in the
blank node to quads map.

3. For each quad q in Qn:

3.1. Serialize q in N-Quads format with the following special rule:

3.1.1. If any component in q is a blank node, then serialize it using a special identifier
as follows.

3.1.1.1. If the existing blank node’s identifier is n then use the blank node identifier
a; otherwise, use the blank node identifier z.

4. Sort nquads in lexicographical order and denote the sorted list by HF .

5. Return the hash hf (n) that results from passing the sorted, joined list HF through the
hash algorithm h.

2.2 N-Degree Hashes

When two blank nodes have the same first degree hash, extra steps must be taken to detect global,
or N -degree, distinctions. All information that is in any way connected to the blank node n through
other blank nodes, even transitively, must be considered.

To consider all transitive information, the algorithm traverses and encodes all possible paths of
incident mentions emanating from n, called gossip paths, that reach every unlabeled blank node
connected to n. Each unlabeled blank node is assigned a temporary label in the order in which it
is reached in the gossip path being explored. The mentions that are traversed to reach connected

5

2.2 N -Degree Hashes

blank nodes are encoded in these paths via related hashes. This provides a deterministic way to
order all paths coming from n that reach all blank nodes connected to n without relying on input
blank node labels.

Ultimately, the algorithm selects a shortest gossip path, distributing canonical labels to the unla-
beled blank nodes in the order in which they appear in this path. The hash of this encoded shortest
path, called the N -degree hash of n, distinguishes n from other blank nodes in the dataset.

For clarity, we consider a gossip path encoded via the string s to be shortest1 provided that

1. The length of s is less than or equal to the length of any other gossip path string s′.

2. If s and s′ have the same length (as strings), then s is lexicographically less than or equal to
s′.

For example, abc is shorter than bbc, whereas abcd is longer than bcd.

2.2.1 Related Hashes

This section explains how a related hash is assigned to a mention between two blank nodes. Suppose
that a blank node n is related to the blank node ni 6= n via the quad q. hr(q, n, ni, position) is the
related hash (with respect to n) that results from the Hash Related Node (HR) Algorithm
when passing the quad q, identifier node n, and the related blank node ni where position indicates
the position of ni in q for the mention that is being encoded. For example, consider the quad
q = < n, p, ni, ni >. hr(q, n, ni, o) is the related hash that encodes that n mentions ni in the object
position of q, whereas hr(q, n, ni, g) is the related hash that encodes that n mentions ni in the graph
position of q. Note: it is possible that a single quad q produces two related hashes if ni appears in
two components of q.)

If the related node ni has already been issued a label, that label is used to compute the related
hash. Otherwise, the first degree hash of ni is used. In this way, a related hash is a value that
encodes a mention. The lexicographically sorted set of all related hashes, or related hash set, for
a node n is denoted Hn. Below, we give an example of related hashes for quads in a mention set
Qn.

Given a related hash x ∈ Hn, it is possible that x is repeated (e.g. when two quads mention two
blank nodes in the same way). The related hash to blank node list2, denoted [x], is the set of
all blank nodes, including repetitions, that produce the related hash x. For example, if two different
quads containing n and n1 produce the related hash x, then n1 will be listed twice in [x].

1The spec in [3] stipulates the condition for skipping to the next permutation due to path length (steps 5.4.4.3
and 5.4.5.5) as path is greater than or equal to the length of chosen path and path is lexicographically greater than
chosen path. Considering path length first before considering lexicographical order is an optimization for selecting
a shortest path that we make in this paper’s definition of shortest path. The results of this paper still hold when
using the original condition of the spec.

2[x] is the output of the related hash to blank node list mapping on x that determines the shortest chosen path
string in step 5.4 of the Hash N-Degree Quads algorithm.

6

2.2 N -Degree Hashes

Hash Related Blank Node (HR) Algorithm

This algorithm creates a hash to identify how a blank node n is related to another ni in a
quad q ∈ Qn. It takes the normalization state, a related blank node ni, a quad q in Qn, an
identifier issuer I, and a string position as inputs.

1. Set the identifier I(ni) to use for the related node ni, preferring first the canonical
identifier ci if issued, second the temporary identifier bi if issued, and last, if necessary,
the result of the HF algorithm hf (ni).

2. Initialize a string input to the value of position (s, o, or g).

3. If position is not g, append < p > to input.

4. Append I(ni) to input.

5. Return the related hash hr(q, n, ni, position) that results from passing input through
the hash algorithm h.

Example 2.2. Suppose that q =< n, p, n1, n2 >. We will consider the case where n1 has been
issued a label, namely b1, but n2 has not. From n’s perspective, q contains two mentions:

1. m1: n mentions n1 in the object position with predicate p.

2. m2: n mentions n2 in the graph position.

Then, hr(q, n, n1, o) = h(“o < p > b1”) is the related hash assigned to m1, and hr(q, n, n2, g) =
h(“ghf (n2)”) is the related hash assigned to m2. Table 2 shows all related hashes that would result
for each quad in an example mention set Qn when assuming n1 has label b1 and n2 has no label yet.

Qn < n, p, n1, n2 > < n2, p, n, n > < s, p, n, g > < n1, p, o, n > < n1, p, n, n1 >

Hn
h(“o < p > b1”)
h(“ghf (n2)”)

h(“s < p > hf (n2)”) − h(“s < p > b1”)
h(“s < p > b1”)

h(“gb1”)

Table 2: The related hashes in Hn for mention list Qn. n1 has issued label b1 and n2 has not been
labeled yet. s, o, and g are nonblank.

2.2.2 Gossip Paths

When two blank nodes have the same first degree hash, it is necessary to describe their information
from a degree greater than one. To do so, URDNA2015 explores paths of incident mentions. The
generalization of edges to mentions necessitates an analogous generalization of paths. A gossip
path pnn′ from a blank node n to a blank node n′ in the dataset D is an alternating sequence of
blank nodes and mentions (n0,m1, n1,m2, n2, . . . ,mk, nk) such that

1. n0 = n and nk = n′;

7

2.2 N -Degree Hashes

2. For each i, 0 ≤ i ≤ k − 1, ni is related to ni+1 via mi+1. Note that this implies that
Qni
∩Qni+1

6= ∅ for each i; and

3. ni 6= nj if and only if i 6= j.

Remark 2.3. Notice that two blank nodes need only appear in a quad together for there to be a
gossip path between them. It is not necessary that the path proceeds in the direction from subject to
object. Mentions may be traversed from object to subject, for example.

When multiple nodes have the same first degree hash, the Hash N -Degree Quads (HN) Algorithm
is executed on each one. Given an unlabeled blank node n, HN explores all gossip paths from n to
any other blank node ni that is reachable by paths through only blank nodes that have not yet been
issued a canonical identifier. The set of all such paths is called the gossip class [Pn] of n. Although
a gossip class is a set of paths, we will say “a blank node ni is in [Pn]” when ni appears in a path in
[Pn]. Note that it is possible for [Pn] to contain paths that terminate at canonically identified nodes.

Example 2.4. Figure 2 shows a graph with unlabeled blank nodes n, n1, n2, n3, and n4. There are
also two canonically labeled blank nodes c1 and c2. The gossip class [Pn] of n is

[Pn] = {(n,m1, c1), (n,m2, n1), (n,m2, n1,m4, c2), (n,m2, n1,m5, n2), (n,m3, n3)} .
Note that n4 is not reachable from n via only unlabeled nodes. Therefore, the gossip class of n does
not contain any paths from n to n4. We do, however, include paths to c1 and c2 since they are blank
nodes that can be reached from the unlabeled blank nodes n and n1, respectively.

n

c1

n1

n3

c2

n4

n2

m1
m2

m4

m6

m3

m5

Figure 2

2.2.3 Computing N-Degree Hashes at a High Level

The N -degree hash of a blank node n, denoted by hN(n), is the hash that results from executing
the Hash N -Degree Quads (HN) algorithm when passing the identifier node n and its tem-
porary issuer In. The data to hash Dn corresponds to the shortest gossip path for distributing
labels to the unlabeled blank nodes connected to n. The hash of Dn is precisely the N -degree hash
of n. That is, hN(n) = h(Dn). In Section 2.2.4, we describe the terms of Dn, which encode the
nodes and mentions that comprise gossip paths in [Pn].

Below, we first give a high level summary of the HN algorithm. Example 2.5 illustrates this high
level summary and the data to hash that results from HN. In Section 2.2.5, we present the full
algorithm and explain in further detail how gossip paths are encoded.

8

2.2 N -Degree Hashes

The (High Level) Hash N -Degree Quads (HN) Algorithm

The following provides a high level outline for how the N -degree hash of n is computed along
the shortest gossip path. Note that the full algorithm considers all gossip paths, ultimately
returning the hash of the shortest encoded path.

1. Compute related hashes. Compute the related hash Hn set for n, i.e. all first degree
mentions between n and another blank node. Note that this includes both labeled and
unlabeled blank nodes.

2. Explore mentions. Given the related hash x in Hn, record x in the data to hash Dn.
Determine whether each blank node reachable via the mention with related hash x has
already received a label.

(a) Record the labels of labeled nodes. If a blank node already has a label, record
its label in Dn once for every mention with related hash x. Skip to the next related
hash in Hn and repeat step 2.

(b) Distribute and record temporary labels to unlabeled nodes. For each
unlabeled blank node, assign it a temporary label according to the order in which it
is reached in the gossip path, recording its given label in Dn (including repetitions).
Add each unlabeled node to the recursion list Rn(x) in this same order (omitting
repetitions).

(c) Recurse on newly labeled nodes. For each ni in Rn(x)

i. Record its label in Dn

ii. Append < r(i) > to Dn where r(i) is the data to hash that results from
returning to step 1, replacing n with ni.

3. Compute the N-degree hash of n. Hash Dn to return the N -degree hash of n,
namely hN(n). Return the updated issuer In that has now distributed temporary labels
to all unlabeled blank nodes connected to n.

We call the pair (hN(n), In) returned from the algorithm the result of HN, where In is the final
issuer state at the conclusion of HN (see step 3 above). At this time, In has issued temporary labels
bi for each unlabeled node that is visited in computing hN(n). That is, for each ni ∈ [Pn]. These
temporary labeled nodes are denoted n0, n1, . . . , nk, where In(ni) = bi for each i. Note that n0 = n,
necessarily.

As described above in step 2(c), HN recurses on each unlabeled blank node when it is first reached
along the gossip path being explored. This recursion can be visualized as moving along the path
from n to the blank node ni that is receiving a temporary identifier. If, when recursing on ni, an-
other unlabeled blank node nj is discovered, the algorithm again recurses. Such a recursion traces
out the gossip path from n to nj via ni.

The recursive hash r(i) is the hash returned from the completed recursion on the node ni when
computing hN(n). Just as hN(n) is the hash of Dn, we denote the data to hash in the recursion on
ni as Di. So, r(i) = h(Di). For each related hash x ∈ Hn, Rn(x) is called the recursion list on

9

2.2 N -Degree Hashes

which the algorithm recurses.

n

c1

n1

n5

n3 n2

s
n4

m1
m2

m6

m3

m5

m4

Figure 3

Example 2.5. Figure 3 shows a graph with one nonblank node s and seven blank nodes. Of the
blank nodes, c1 is canonically labeled, and n and each ni are unlabeled. This example computes
the data to hash when executing HN on n. Note that while n is related to four blank nodes, only
three distinct related hashes are produced since we assume that the mentions m3 and m4 correspond
to the same related hash. In particular, hf (n4) = hf (n5). Table 3 shows each related hash x, a
permutation of its related hash to blank node list [x], and its data to hash term T (x).

Hn [x] T (x)
x1 = h(“o < p > c1”) [x1] = {c1} x1 c1

x2 = h(“s < p > hf (n1)”) [x2] = {n1} x2 b1 b1 < r(1) >
x3 = h(“s < p > hf (n4)”) [x3] = {n4, n5} x3 b4 b5 b4 < r(4) > b5 < r(5) >

Table 3

If we assume that Hn is lexicographically ordered as x1, x2, x3, then the following data to hash results
from HN.

Dn = x1 c1 x2 b1 b1 < r(1) > x3 b4 b5 b4 < r(4) > b5 < r(5) > .

Note that the blank nodes n2 and n3 receive the labels b2 and b3, respectively, when recursing on n1.
These labels appear in the recursive data to hash < r(1) >. In Section 2.2.5, Example 2.10 shows
the steps of executing HN on n that ultimately produce Dn.

2.2.4 The Terms of a Node’s Data to Hash

N -degree hashes are used to determine the order in which canonical labels are distributed to blank
nodes with non-unique first degree hashes. Recall that a blank node’s N -degree hash is computed
from its data to hash string. Example 2.5 provided an example of the data to hash that might result
from the algorithm. In this section, we characterize generally the terms of a blank node n’s data to
hash Dn. This characterization will be essential for proving that URDNA2015 yields a canonical
labeling of the dataset.

10

2.2 N -Degree Hashes

Lemma 2.6. Suppose that n is a blank node with related hash list Hn. Let x ∈ Hn be a related hash
and [x] be an arbitrary permutation of the related hash to blank node list for x. If a node w ∈ [x] is
already labeled when computing x, then w is the only distinct node in [x].

Proof. When computing the related hash of a previously labeled node w, its unique label (canonical
or temporary) In(w) is used in the input string. That is,

x =

h(“s < p > In(w)”) if s = w

h(“o < p > In(w)”) if o = w

h(“gIn(w)”) if g = w

.

No other blank node (labeled or unlabeled) can return w’s label from In. Consequently, only w can
produce the related hash x. In this case, [x] = {w,w, . . . , w}, where w appears once for each quad
whose related hash equals x.

Theorem 2.7. Let n be a node with related hash list Hn, let x be a related hash in Hn, and let [x]
be the related hash to blank node list for x. Then, x contributes a term T (x) of exactly one of the
following forms to Dn when executing HN.

1. If [x] contains a blank node w that was issued label In(w) prior to computing x, then

T (x) = x In(w)In(w) · · · In(w).

Note: the number of copies of In(w) is equal to the number of times that w appears in [x].

2. Otherwise, [x] contains only blank nodes that were unlabeled when computing x. In this case,
suppose [x] = {ni1 , . . . , ni`} with recursion list Rn(x) = {nj1 , nj2 , . . . , njt}. Then,

T (x) = x bi1 bi2 · · · bi` bj1 < r(j1) > bj2 < r(j2) > · · · bjt < r(jt) > .

Note that if Rn(x) = ∅, then the remainder terms bj1 < r(j1) > bj2 < r(j2) > · · · bjt < r(jt) >
are omitted from T (x).

Proof. Given x ∈ Hn, regardless of the value of [x], the first entry in the term T (x) contributed to
Dn will be x, per step 5.1 of HN. The appended data that follows x depends on whether [x] contains
a previously labeled node or not.

Case 1. [x] contains a node that was labeled prior to computing x.

By Lemma 2.6, if [x] contains a node that has already been labeled prior to computing x, then
[x] = {m,m, . . . ,m}. Either m is canonically identified or it is temporarily identified.

If w has canonical identifier In(w) = cw, then for each copy of w in [x], cw is appended to Dn in
step 5.4.4.1 of HN. In this case,

T (x) = x cwcw · · · cw.
Otherwise, w has temporary identifier In(w) = bw. For each copy of w in [x], bw is appended to
Dn in step 5.4.4.2.2 of HN. So,

T (x) = x bwbw · · · bw.
Either way,

T (x) = x In(w)In(w) · · · In(w).

11

2.2 N -Degree Hashes

Case 2. [x] contains only nodes that were unlabeled when computing x.

In this case, suppose [x] = {ni1 , . . . , ni`} with recursion list Rn(x) = {nj1 , nj2 , . . . , njt}. Note
that Rn(x) is an ordered subset of the distinct nodes from [x] on which the algorithm has not
yet recursed when executing HN step 5 for x. For each related node nik in the permutation [x]
(including repetitions), the algorithm first checks whether nik has been issued a label. If not,
nik is appended to the recursion list (HN 5.4.4.2.1) and issued a label (HN 5.4.4.2.2). Then,
regardless of whether nik was appended to Rn(x), its issued label bik is appended to Dn (note:
nodes that are repeated in the permutation will have their labels repeated accordingly in the
data string). Once HN 5.4.4 has completed, a recursion term of the form bjk < r(k) > is also
appended for each node in Rn(x) (in order) in HN 5.4.5. That is,

T (x) = x bi1 bi2 · · · bi` bj1 < r(j1) > bj2 < r(j2) > · · · bjt < r(jt) > .

Note that if Rn(x) = ∅, then
T (x) = x bi1 bi2 · · · bi` .

For example, if the permutation of [x] is {n1, n2, n3, n1, n3, n1} and Rn(x) = {n1, n2, n3}. Then,
the data appended is

T (x) = x b1 b2 b3 b1 b3 b1 b1 < r(1) > b2 < r(2) > b3 < r(3) > .

Remark 2.8.

1. Whenever the algorithm recurses on a blank node ni, its recursive hash r(i) appears in Dn.
The recursion r(i) is itself the hash of a data string Di, whose terms follow the same form
when applying Theorem 2.7 to n = ni.

2. The term T (x) appended to Dn is ultimately the lexicographically shortest string produced when
running over all permutations of [x]. This is guaranteed by step 5.4 of HN.

Corollary 2.9. For each blank node ni ∈ [Pn] every related hash in its related hash list Hni
appears

in a string that is hashed when executing HN on n. That is, each of ni’s mentions is encoded and
ultimately influences the N-degree hash of n.

Proof. If ni = n (that is, i = 0), Theorem 2.7 demonstrates that every x ∈ Hn contributes a term
T (x) to Dn. Since x appears in T (x), x appears in Dn, the data string whose hash yields the
N -degree hash of n. If ni 6= n (that is, i > 0), Remark 2.8(i) notes how each x ∈ Hni

contributes a
term T (x) to the recursive data to hash string Di used to compute r(i). Because ni is recursed on
when it is first issued the label bi, the term < r(i) > necessarily appears in a data to hash string
that is ultimately used to compute the N -degree hash of n.

2.2.5 Encoding Gossip Paths with the Hash N-Degree Quads Algorithm

Theorem 2.7 characterizes the terms of a node’s data to hash Dn for each of its related hashes in
Hn. In this section, we explain exactly how the data to hash Dn that results from executing the
Hash N -Degree Quads (HN) algorithm on a blank node n encodes gossip paths. We also provide
the full HN algorithm and an example for reference. Please refer to the high level summary of

12

2.2 N -Degree Hashes

Section 2.2.3 as needed.

HN explores each gossip path beginning at n, issuing temporary labels to unlabeled nodes in the
path, until reaching a node that has already been labeled (either with a temporary or a canonical
identifier). To begin, the lexicographically first related hash x ∈ Hn is appended to Dn. Nodes
related to n with the related hash x are each mentioned by n via the same type of mention m1.
Either m1 mentions a canonical node w or m1 mentions at least one unlabeled blank node.

In the former case, a term T (x) of form (i) in Theorem 2.7 is appended to Dn. Each copy of cw in
T (x) corresponds to a gossip path (n,m1, cw), one for each mention m1 relating n and w. Because
gossip paths terminate when a labeled node is reached, the next hash in Hn is selected. In this
way, HN begins exploring a new path in search of unlabeled nodes. If the next related hash also
leads to a canonically labeled node, the process repeats until a related hash encodes a mention to
an unlabeled blank node.

Therefore, we assume that x ∈ Hn encodes the mention m1 that leads to the discovery of an un-
labeled blank node. Each unlabeled node ni ∈ [Pn] that is mentioned by n via m1 if issued a
temporary label and a gossip path (n,m1, ni) is initialized. These paths are indicated in T (x) by
x bi1 bi2 · · · bi` where each bij corresponds to the path (n,m1, nij). After initializing each path, HN
recurses on n1, which is indicated by the term “b1 < r(1) >” in T (x). Recursing on n1 can be
visualized as moving along m1 to n1 and next looking for unlabeled nodes that are related to n1.
The first related hash x2 ∈ Hn1 encodes the next mention m2 to move along. Again, if m2 mentions
a canonically labeled node, T (x2) is appended to n1’s data to hash D1 and the next hash in Hn1 is
selected. Similarly, if m2 mentions a node ni that has already received a temporary label, the term
T (x2) is recorded and the next hash in Hn1 is selected. In particular, Note that when recursing on
n1, the related hash that encodes the mention from n1 to n (from the perspective of n1) will appear
in the recursive data to hash, however n will not be appended to the recursion list as it has already
received a temporary label.

As long as there is a hash in Hn1 that encodes a mention m2 that leads to the discovery of a new
unlabeled node, the algorithm will continue to recurse on the newly discovered node, extending the
gossip path by the new mention and the new node. For example, if m2 is the first mention that
leads to the discovery of an unlabeled node ni, then the algorithm will move to ni. This movement
corresponds to the path (n,m1, n1,m2, ni).

If, however, each hash in Hn1 only leads to previously labeled nodes, the recursion on n1 completes
and the algorithm returns to explore paths beginning at n via the next related hash in Hn.

HN explores gossip paths beginning at n by moving to a related node via a related hash. HN will
continue to step from node to node along a gossip path until the only related nodes have already
been labeled. If for example, the path moves from ni and discovers the labeled node nj, the algo-
rithm returns to ni to explore other mention options (i.e. the next related hash in Hni

). If there
are no other mentions to explore, the algorithm returns to the previous node n` in the path from
which ni was reached, exploring its mention options. In this case, returning to n` signals that the
recursion of HN on ni, r(i), has completed. The algorithm continues to explore other “branches”
until all recursions along the gossip path have been completed, i.e. backing out along the path until
returning to the initial node n.

13

2.2 N -Degree Hashes

After returning to n, a new path is selected for exploration via the next related hash in Hn. This
continues until the related hash list Hn has been exhausted. In this way, HN visits every unlabeled
node ni ∈ [Pn] that is reachable from n and encodes every mention in [Pn].

When a mention m leads to the discovery of more than one unlabeled node, all possible ways for
issuing temporary identifiers to the adjacent nodes are explored. For example, suppose that w and
w′ are each unlabeled. The algorithm first explores the result of labeling w as b1 and w′ as b2,
recording the data to hash until no new nodes can be reached along that path. Then, it explores
the result of labeling w′ as b1 and w as b2. A permutation labeling that yields the shortest data to
hash path is ultimately selected. So, HN explores all the gossip paths in [Pn] and all of the ways to
issue labels to unlabeled nodes along those paths.

Hash N -Degree Quads (HN) Algorithm

This algorithm inputs the normalization state, a blank node identifier n on which to recurse,
and a path identifier issuer that issues temporary node identifiers.

1. Create a hash to related blank nodes map for storing hashes that identify related
blank nodes. The set of all related hashes that are ultimately stored in this map is
denoted by Hn.

2. Get a reference to the list of quads Qn that mention the blank node identifier n.

3. For each quad q in Qn:

3.1. For each component in q, if the component is the subject s, object o, or graph
name g, and it is a blank node identified by n′ where n′ 6= n:

3.1.1. Set hash, denoted by x, to the result of the Hashed Related Blank Node
Algorithm, passing the related blank node n′, quad q, path identifier issuer,
and the component position of n′ in q as either s, o or g. That is, x =
hr(q, n, ni, position).

3.1.2. Add a mapping of hash to the blank node for n′ to the
hash to related blank nodes map, adding an entry as necessary. That is,
add x to the related set Hn (if it is not already a member of the set) and
append n′ to the related hash to blank node list [x].

4. Create an empty string data to hash denoted by Dn.

5. For each related hash x in Hn, sorted lexicographically by related hash:

5.1. Append the related hash x to Dn.

5.2. Create an unset string chosen path. This will later be used to store the current
shortest gossip path through the gossip class [Pn] of n via a mention with related
hash x that produces the shortest data to hash string Dn.

5.3. Create an unset chosen issuer variable. This will ultimately be the state of the
issuer In that is returned from HN.

14

2.2 N -Degree Hashes

5.4. For each permutation of the related hash to blank node list [x]

5.4.1. Create a copy of issuer, issuer copy.

5.4.2. Create an unset string path to store the gossip path through [Pn] that is being
explored along this permutation.

5.4.3. Create an unset recursion list Rn(x) to store blank node identifiers that
must be recursively processed by this algorithm.

5.4.4. For each related blank node n′ in the permutation of [x]:

5.4.4.1. If a canonical identifier cn′ has been issued for n′, append it to path.

5.4.4.2. Otherwise:

5.4.4.2.1. If issuer copy has not issued an identifier for n′, append n′ to Rn(x).

5.4.4.2.2. Use the Issue Identifier algorithm, passing issuer copy and n′, and
append the result to path.

5.4.4.3. If chosen path is not empty and chosen path is shorter than or equal to
path, then skip to the next permutation.

5.4.5. For each related blank node n′ in Rn(x):

5.4.5.1. Set result to the result of recursively executing the HN algorithm, passing
n′ and issuer copy for the path identifier issuer. This result is denoted
by (r(n′), In′) where r(n′) is the returned hash hN(n′) from the recursion.

5.4.5.2. Use the Issuer Identifier algorithm, passing the issuer copy and n′, and
append the result In′(n′) to path.

5.4.5.3. Append < r(n′) > to path.

5.4.5.4. Set issuer copy to the identifier issuer In′ in result.

5.4.5.5. If chosen path is not empty and chosen path is shorter than or equal to
path, then skip to the next permutation.

5.4.6. If chosen path is empty or path is shorter than chosen path, set
chosen path to path and chosen issuer to issuer copy.

5.5. Append chosen path to Dn.

5.6. Replace issuer with chosen issuer.

6. Return issuer and the hash that results from passing Dn through the hash algorithm.
This result is denoted by (hN(n), In)

Example 2.10. The following example illustrates the process of executing the Hash N-Degree Quads
(HN) algorithm on the unlabeled blank node n of the graph in Figure 4. In this graph, s is nonblank,
c1 is a canonically labeled blank node, and each ni is an unlabeled blank node. Just prior to executing
HN on n, URDNA2015 assigns the temporary label b0 to n.

1. Initialize Hn.

2. Qn = {< n, p, s, g >,< n, p, c1, g >,< n1, p, n, g >,< n4, p, n, g >,< n5, p, n, g >}.

3. Compute the lexicographically ordered related hash list Hn = {x1, x2, x3} shown in Table 4.
Note that because n4 and n5 have the same first degree hash, they both correspond to the related
hash x3.

15

2.2 N -Degree Hashes

n

c1

n1

n4

n3 n2

s
n5

m2

m6

m3

m5

m4

m1

Figure 4: The graph of Example 2.10.

Hn [x]
x1 = h(“o < p > c1”) [x1] = {c1}

x2 = h(“s < p > hf (n1)”) [x2] = {n1}
x3 = h(“s < p > hf (n4)”) [x3] = {n4, n5}

Table 4: The related hashes of Hn and their hash to blank node lists.

4. Initialize Dn.

5. The first gossip path explored is (n,m1, c1) (see Figure 5). For x1 in Hn:

5.1. Append x1 to Dn. Note: Dn = x1.

5.2. Initialize chosen path.

5.3. Initialize chosen issuer.

n

c1

n1

n4

n3 n2

s
n5

m2

m6

m3

m5

m4

m1

Figure 5: Exploring the gossip path from n to c1 via the mention m1.

5.4. For the unique permutation {c1} of [x1]:

5.4.1. Create issuer copy.

5.4.2. Create path. Note there is only one path to explore (n,m1, c1).

5.4.3. Initialize Rn(x1).

5.4.4. For c1 in {c1}:

16

2.2 N -Degree Hashes

5.4.4.1. Append c1 to path.

5.4.5. Rn(x1) = ∅ since c1 has already been issued a canonical identifier.

5.4.6. chosen path = c1 and chosen issuer = issuer copy.

5.5. Append chosen path to Dn. So, Dn = x1c1.

5.6. Replace issuer with chosen issuer.

n

c1

n1

n4

n3 n2

s
n5

m1

m6

m3

m5

m4

m2

Figure 6: Exploring the gossip path from n to n1 via the mention m2.

The next gossip path explored is (n,m2, n1). For x2 in Hn:

5.1. Append x2 to Dn. Note: Dn = x1c1x2.

5.2. Initialize chosen path.

5.3. Initialize chosen issuer.

5.4. For the unique permutation {n1} of [x2]:

5.4.1. Create issuer copy.

5.4.2. Create path. Note there is only one path to explore (n,m2, n1).

5.4.3. Initialize Rn(x2).

5.4.4. For n1 in {n1}:
5.4.4.1. There is no canonical identifier for n1.

5.4.4.2.

5.4.4.2.1. Append n1 to Rn(x2). Note: Rn(x2) = {n1}.
5.4.4.2.2. Issue n1 the temporary identifier b1 via the Issue Identifier algorithm passing

issuer copy. Append b1 to path. Note: path = b1.

5.4.5. For n1 in Rn(x2):

5.4.5.1. Recurse on n1, passing issuer copy. Return the resulting N-degree hash r(1)
and issuer In1. Note that recursing on n1 leads to the distribution of tempo-
rary labels b2 and b3 to n2 and n3. Example 2.11 shows the steps of HN when
computing r(1).

5.4.5.2. Append b1 to path. Note: path = b1b1.

5.4.5.3. Append < r(1) > to path. That is, path = b1b1 < r(1) >.

5.4.5.4. issuer copy = In1.

17

2.2 N -Degree Hashes

5.4.5.5. chosen path = ∅.

5.4.6. chosen path = b1b1 < r(1) > and chosen issuer = In1.

5.5. Append chosen path to Dn. Note: Dn = x1c1 x2 b1 b1 < r(1) >.

5.6. Replace issuer with In1.

n

c1

n1

n4

n3 n2

s
n5

m1

m6

m2

m5

m3

m4

Figure 7: Exploring the gossip paths along the mentions m4 and m5 that each correspond to the
related hash x3.

Because the next related hash corresponds to two mentions, there are two paths to explore,
pnn4 = (n,m3, n4) and pnn5 = (n,m4, n5), shown in Figure 7. There are two orders in
which these paths can be explored; that is, there are two permutations of [x3] that must be
encoded and compared.

For x3 in Hn:

5.1. Append x3 to Dn. Note: Dn = x1c1 x2 b1 b1 < r(1) > x3.

5.2. Initialize chosen path.

5.3. Initialize chosen issuer.

5.4. There are two permutations, {n4, n5} and {n5, n4}, of [x3].

For the permutation {n4, n5} that explores pnn4 and then pnn5:

5.4.1. Create issuer copy.

5.4.2. Create path.

5.4.3. Initialize Rn(x3).

5.4.4. For n4 in {n4, n5}:
5.4.4.1. There is no canonical identifier for n4.

5.4.4.2.

5.4.4.2.1. Append n4 to Rn(x3). Note: Rn(x3) = {n4}.
5.4.4.2.2. Issue n4 the temporary identifier b4 via the Issue Identifier algorithm passing

issuer copy. Append b4 to path. Note: path = b4. Note that the labels b2
and b3 were already issued when recursing on n1 via the related hash x2.

For n5 in {n4, n5}:

18

2.2 N -Degree Hashes

5.4.4.1. There is no canonical identifier for n5.

5.4.4.2.

5.4.4.2.1. Append n5 to Rn(x3). Note: Rn(x3) = {n4, n5}.
5.4.4.2.2. Issue n5 the temporary identifier b5 via the Issue Identifier algorithm passing

issuer copy. Append b5 to path. Note: path = b4b5.

5.4.5. Rn(x3) = {n4, n5}.

For n4 in Rn(x3):

5.4.5.1. Recurse on n4, passing issuer copy. Return the resulting N-degree hash r(4)
and issuer In4.

5.4.5.2. Append b4 to path. Note: path = b4b5b4.

5.4.5.3. Append < r(4) > to path. That is, path = b4b5b4 < r(4) >.

5.4.5.4. issuer copy = In4.

5.4.5.5. chosen path = ∅.

For n5 in Rn(x3):

5.4.5.1. Recurse on n5, passing In4. Return the resulting N-degree hash r(5) and issuer
In5.

5.4.5.2. Append b5 to path. Note: path = b4b5b4 < r(4) > b5.

5.4.5.3. Append < r(5) > to path. That is, path = b4b5b4 < r(4) > b5 < r(5) >.

5.4.5.4. issuer copy = In5.

5.4.5.5. chosen path = ∅.

5.4.6. chosen path = b4b5b4 < r(4) > b5 < r(5) > and chosen issuer = In5.

For the permutation {n5, n4} that explores pnn5 and then pnn4:

5.4.1. Create issuer copy.

5.4.2. Create path.

5.4.3. Initialize Rn(x3).

5.4.4. For n5 in {n5, n4}:
5.4.4.1. There is no canonical identifier for n5.

5.4.4.2.

5.4.4.2.1. Append n5 to Rn(x3). Note: Rn(x3) = {n5}.
5.4.4.2.2. Issue n5 the temporary identifier b4 via the Issue Identifier algorithm passing

issuer copy. It is important to note that for this permutation, n5 receives
the label b4 (whereas n4 was labeled b4 in the other permutation). Append b4
to path. Note: path = b4.

For n4 in {n5, n4}:
5.4.4.1. There is no canonical identifier for n4.

5.4.4.2.

5.4.4.2.1. Append n4 to Rn(x3). Note: Rn(x3) = {n5, n4}.
5.4.4.2.2. Issue n4 the temporary identifier b5 via the Issue Identifier algorithm passing

issuer copy. Append b5 to path. Note: path = b4b5.

19

2.2 N -Degree Hashes

5.4.5. Rn(x3) = {n5, n4}.

For n5 in Rn(x3):

5.4.5.1. Recurse on n5, passing issuer copy. Return the resulting N-degree hash r(5)
and issuer In5.

5.4.5.2. Append b4 to path. Note: path = b4b5b4.

5.4.5.3. Append < r(5) > to path. That is, path = b4b5b4 < r(5) >.

5.4.5.4. issuer copy = In5.

5.4.5.5. chosen path = b4b5b4 < r(4) > b5 < r(5) >, so do not skip.

For n4 in Rn(x3):

5.4.5.1. Recurse on n4, passing In5. Return the resulting N-degree hash r(4) and issuer
In4.

5.4.5.2. Append b5 to path. Note: path = b4b5b4 < r(4) > b5.

5.4.5.3. Append < r(4) > to path. That is, path = b4b5b4 < r(5) > b5 < r(4) >.

5.4.5.4. issuer copy = In4.

5.4.5.5. Recall that chosen path = b4b5b4 < r(4) > b5 < r(5) >. The symmetry of n4

and n5 implies that r(4) = r(5). Therefore, chosen path = path, so do not
skip.

5.4.6. Note that path = chosen path, so do not replace chosen path or chosen issuer.
Note: chosen issuer = In5 (the final state of In5 for the permutation {n4, n5}.

5.5. Append chosen path to Dn.

Dn = x1c1x2b1b1 < r(1) > x3b4b5b4 < r(4) > b5 < r(5) > .

5.6. Replace issuer with In5.

6. Return (hN(n), In) where hN(n) = h(Dn) and In = In4.

Example 2.11. In this example, we show the steps of recursing on n1 that were omitted in Exam-
ple 2.10. That is, we compute r(1) by executing HN on n1. Note that c1 is canonically labeled and
that n has been issued the temporary label b0.

1. Initialize Hn1.

2. Qn1 = {< n1, p, n, g >,< n1, p, n2, g >,< n1, p, n3, g >}.

3. Compute the lexicographically ordered related hash list Hn1 = {x4, x5} shown in Table 5. Note
that because n2 and n3 have the same first degree hash, they both correspond to the related
hash x5.

Hn1 [x]
x4 = h(“o < p > b0”) [x4] = {n}

x5 = h(“o < p > hf (n2)”) [x5] = {n2, n3}

Table 5: The related hashes of Hn1 and their hash to blank node lists.

20

2.2 N -Degree Hashes

n

c1

n1

n4

n3 n2

s
n5

m6

m3

m5

m1

m4

m2

Figure 8: Exploring the gossip path from n1 to n via the mention m2.

4. Initialize Dn1.

5. The first gossip path explored is (n1,m2, n), shown in Figure 8. For x4 in Hn1:

5.1. Append x4 to Dn1. Note: Dn1 = x4.

5.2. Initialize chosen path.

5.3. Initialize chosen issuer.

5.4. For the unique permutation {n} of [x4]:

5.4.1. Create issuer copy.

5.4.2. Create path. Note there is only one path to explore (n1,m2, n).

5.4.3. Initialize Rn1(x4).

5.4.4. For n in {n}:
5.4.4.1. There is no canonical identifier for n.

5.4.4.2.

5.4.4.2.1. n has already been issued the temporary label b0. Thus, Rn1(x4) = ∅.

5.4.4.2.2. Append b0 to path. Note: path = b0.

5.4.4.3. chosen path = ∅, so do not skip.

5.4.5. Rn1(x4) = ∅.

5.4.6. chosen path = b0 and chosen issuer = issuer copy = In.

5.5. Append chosen path to Dn1. Note: Dn1 = x4b0.

5.6. Replace issuer with In.

Because the next related hash corresponds to two mentions, there are two paths to explore,
pnn2 = (n1,m5, n2) and pnn3 = (n1,m6, n3), shown in Figure 9. There are two orders
in which these paths can be explored; that is, there are two permutations of [x5] that must be
encoded and compared.

For x5 in Hn1:

5.1. Append x5 to Dn1. Note: Dn1 = x4b0 x5.

21

2.2 N -Degree Hashes

n

c1

n1

n4

n3 n2

s
n5

m3

m1

m4

m2

m5

m6

Figure 9: Exploring the gossip paths along the mention m5 and m6 that each correspond to the
related hash x5.

5.2. Initialize chosen path.

5.3. Initialize chosen issuer.

5.4. There are two permutations, {n2, n3} and {n3, n2}, of [x5].

For the permutation {n2, n3} that explores pnn2 and then pnn3:

5.4.1. Create issuer copy.

5.4.2. Create path.

5.4.3. Initialize Rn1(x5).

5.4.4. For n2 in {n2, n3}:
5.4.4.1. There is no canonical identifier for n2.

5.4.4.2.

5.4.4.2.1. Append n2 to Rn1(x5). Note: Rn1(x5) = {n2}.
5.4.4.2.2. Issue n2 the temporary identifier b2 via the Issue Identifier algorithm passing

issuer copy. Append b2 to path. Note: path = b2.

For n3 in {n2, n3}:
5.4.4.1. There is no canonical identifier for n3.

5.4.4.2.

5.4.4.2.1. Append n3 to Rn1(x5). Note: Rn1(x5) = {n2, n3}.
5.4.4.2.2. Issue n3 the temporary identifier b3 via the Issue Identifier algorithm passing

issuer copy. Append b3 to path. Note: path = b2b3.

5.4.5. Rn1(x5) = {n2, n3}.

For n2 in Rn1(x5):

5.4.5.1. Recurse on n2, passing issuer copy. Return the resulting N-degree hash r(2)
and issuer In2.

5.4.5.2. Append b2 to path. Note: path = b2b3b2.

5.4.5.3. Append < r(2) > to path. That is, path = b2b3b2 < r(2) >.

5.4.5.4. issuer copy = In2.

22

2.2 N -Degree Hashes

5.4.5.5. chosen path = ∅.

For n3 in Rn1(x5):

5.4.5.1. Recurse on n3, passing In2. Return the resulting N-degree hash r(3) and issuer
In3.

5.4.5.2. Append b3 to path. Note: path = b2b3b2 < r(2) > b3.

5.4.5.3. Append < r(3) > to path. That is, path = b2b3b2 < r(2) > b3 < r(3) >.

5.4.5.4. issuer copy = In3.

5.4.5.5. chosen path = ∅.

5.4.6. chosen path = b2b3b2 < r(2) > b3 < r(3) > and chosen issuer = In3.

For the permutation {n3, n2} that explores pnn3 and then pnn2:

5.4.1. Create issuer copy.

5.4.2. Create path.

5.4.3. Initialize Rn1(x5).

5.4.4. For n3 in {n3, n2}:
5.4.4.1. There is no canonical identifier for n3.

5.4.4.2.

5.4.4.2.1. Append n3 to Rn1(x5). Note: Rn1(x5) = {n3}.
5.4.4.2.2. Issue n3 the temporary identifier b2 via the Issue Identifier algorithm passing

issuer copy. It is important to note that for this permutation, n3 receives
the label b2 (whereas n2 was labeled b2 in the other permutation). Append b2
to path. Note: path = b2.

For n2 in {n3, n2}:
5.4.4.1. There is no canonical identifier for n2.

5.4.4.2.

5.4.4.2.1. Append n2 to Rn1(x5). Note: Rn1(x5) = {n3, n2}.
5.4.4.2.2. Issue n2 the temporary identifier b3 via the Issue Identifier algorithm passing

issuer copy. Append b3 to path. Note: path = b2b3.

5.4.5. Rn1(x5) = {n3, n2}.

For n3 in Rn1(x5):

5.4.5.1. Recurse on n3, passing issuer copy. Return the resulting N-degree hash r(3)
and issuer In3.

5.4.5.2. Append b2 to path. Note: path = b2b3b2.

5.4.5.3. Append < r(3) > to path. That is, path = b2b3b2 < r(3) >.

5.4.5.4. issuer copy = In3.

5.4.5.5. chosen path = b2b3b2 < r(2) > b3 < r(3) >, so do not skip.

For n2 in Rn1(x5):

5.4.5.1. Recurse on n2, passing In3. Return the resulting N-degree hash r(2) and issuer
In2.

5.4.5.2. Append b3 to path. Note: path = b2b3b2 < r(3) > b2.

5.4.5.3. Append < r(2) > to path. That is, path = b2b3b2 < r(3) > b3 < r(2) >.

23

5.4.5.4. issuer copy = In2.

5.4.5.5. Recall that chosen path = b2b3b2 < r(2) > b3 < r(3) >. The symmetry of n2

and n3 implies that r(2) = r(3). Therefore, chosen path = path, so do not
skip.

5.4.6. Note that path = chosen path, so do not replace chosen path or chosen issuer.
Note: chosen issuer = In3 (the final state of In3 for the permutation {n2, n3}.

5.5. Append chosen path to Dn1.

Dn1 = x4b0x5b2b3b2 < r(2) > b3 < r(3) > .

5.6. Replace issuer with In5.

6. Return (r(1), In1) where r(1) = h(Dn1) and In1 = In5.

2.2.6 Distributing Canonical Labels Via N -Degree Hashes

When a first degree hash is non-unique, all nodes with this hash are grouped together. For each
group, the N -degree hash of each node in this group is computed and the state of their temporary
issuers is returned. The lexicographically sorted list of N -degree hashes for these nodes is called the
hash path list. Proceeding in lexicographical order, for each N -degree hash in the hash path list
and its corresponding blank node n, every unlabeled blank node in the gossip class [Pn] of n will
receive a canonical label. The order in which these nodes receive labels is the same as the order in
which their temporary issuer In issued their temporary labels in HN.

This process is uniquely determined so long as the hash path list contains only distinct N -degree
hashes. But, what if two nodes n and n′ that have the same first degree hash also have the same
N -degree hash? We will show that the order in which each node’s temporary issuer is used to issue
canonical labels does not matter. The labeled lists that result will be the same. This result is called
the Temporary Labeling Theorem and is proven in Section 3.2.

3 The Canonical Labeling of URDNA2015

This chapter is devoted to demonstrating that the labeling that results from URDNA2015 is indeed
canonical. That is, two RDF datasets will be labeled the same if and only if the datasets are iso-
morphic. We present the full algorithm here for reference.

URDNA2015

1. Create the normalization state.

2. For every quad q in the dataset D:

2.1. For each blank node n that occurs in q, add a reference to q in the
blank node to quads map, create a new entry if necessary.

3. Create a list of non-normalized blank node identifiers non-normalized identifiers

and populate it using the keys from the blank node to quads map.

24

4. Initialize simple, a boolean flag to true.

5. While simple is true, issue canonical identifiers for blank nodes:

5.1. Set simple to false.

5.2. Clear hash to blank nodes map.

5.3. For each blank node identifier n in non-normalized identifiers:

5.3.1. Create its first degree hash hf (n) via the Hash First Degree Quads algorithm.

5.3.2. Add hf (n) to the hash to blank nodes map, creating a new entry if neces-
sary. Add hf (n) to the list of first degree hashes HF , including repetitions.

5.4. For each hash in HF , lexicographically-sorted by hash:

5.4.1. If the hash appears more than once in HF , continue to the next hash.

5.4.2. Use the Issue Identifier algorithm, passing canonical issuer and the single
blank node identifier n such that hf (n) = hash.

5.4.3. Remove n from non-normalized identifiers.

5.4.4. Remove hash from the hash to blank nodes map.

5.4.5. set simple to true.

6. For each hash in HF , lexicographically-sorted by hash:

6.1. Create hash path list where each item will be a result of running the Hash
N -degree Quads algorithm.

6.2. For each blank node identifier n in hash to blank nodes map, lexicographically
sorted by hash:

6.2.1. If a canonical identifier has already been issued for n, continue to the next
blank node identifier.

6.2.2. Create temporary issuer In, an identifier issuer initialized with : b.

6.2.3. Use the Identifier Issuer algorithm, passing temporary issuer In, to issue a
new temporary blank node identifier bn to n.

6.2.4. Run the Hash N -Degree Quads algorithm,, passing temporary isuer In, and
append the result to the hash path list.

6.3. For each result in the hash path list, lexicographically-sorted by the N -degree
hashes in result:

6.3.1. For each blank node identifier n that was issued a temporary identifier by
identifier issuer in result, issue a canonical identifier, in the same order
using the Issue Identifier algorithm, passing canonical issuer and n.

7. For each quad q in D:

7.1. Create a copy, quad copy, of q and replace any existing blank node identifier n
using the canonical identifier C(n) previously issued by canonical issuer.

7.2. Add quad copy to the normalized dataset C(D).

8. Return the normalized dataset C(D).

25

3.1 RDF Dataset Comparison

3.1 RDF Dataset Comparison

To establish that URDNA2015 yields a canonical labeling, we must first give the conditions under
which two datasets are isomorphic. We use the notations I, L, and B to refer to the pairwise
disjoint sets of IRIs, literals, and blank nodes, respectively in a given RDF dataset. For simplicity,
we denote I ∪ L ∪B by ILB.

Definition 3.1. Let D and D′ be RDF datasets. We say that M : ILB → ILB is a dataset-
isomorphism provided that M is a bijection between the terms of D and the terms of D′ such
that

1. M is the identity on IRIs, literals, and the default graph symbol “− ”;

2. M maps blank nodes in D to blank nodes in D′; and,

3. The image of the dataset D under M is

M(D) = {< M(s), p,M(o),M(g) > | < s, p, o, g > is in D}

D and D′ are dataset-isomoprhic if there exists a dataset-isomorphism M such that M(D) = D′.

The definition of dataset isomorphism can also be used to determine whether a subset of quads
in one dataset is isomorphic to a subset of quads in another dataset. Given a subset Q of D and
a subset Q′ of D′, we use the notation Q ∼= Q′ to denote that Q is isomorphic to Q′. Note that
Q ∼= Q′ need not imply that D ∼= D′.

3.2 The Case of Equal N-Degree Hashes

As a first distinction, URDNA2015 uses first degree hashes to issue canonical identifiers. When
multiple nodes have the same first degree hash, their N -degree hashes are computed. Then, canon-
ical labels are issued according to the lexicographically sorted hash path list of N -degree hashes.
In this section, we will demonstrate that when two nodes have the same N -degree hash, the order
in which their temporary issuers are used to distribute canonical labels does not matter.

Below, with the assistance of a few lemmas, the Temporary Labeling Theorem asserts that when
two nodes have the same N -degree hash, the subsets of quads associated with their gossip classes
are isomorphic via the identification of nodes that receive the same temporary identifier by In and
In′ , respectively. Because of this result, repeated N -degree hashes in the hash path list can be
processed in any order.

Lemma 3.2. Suppose that the blank nodes n and n′ have equal first degree hashes and equal N-
degree hashes. If In issues the label bi to ni ∈ [Pn] and In′ issues the label bi to n′i ∈ [Pn′], then
hf (ni) = hf (n′i).

Proof. By assumption, hf (n) = hf (n′). Therefore the claim is true when i = 0. Let i ≥ 1 be
arbitrary. When ni and n′i are each first issued the label bi, their first degree hash is used to compute
the related hash x to which bi is appended to their data to hash strings Dn and Dn′ . Because n
and n′ have the same N -degree hash, it must be that Dn = Dn′ . Furthermore, because bi must
appear with exactly the same related hashes in both data strings, it must be that hf (ni) = hf (n′i).
Therefore, the first degree hashes of all corresponding nodes in [Pn] and [Pn′] must have the same
first degree hash.

26

3.2 The Case of Equal N -Degree Hashes

Theorem 3.3 (The Temporary Labeling Theorem). Suppose that two blank nodes n and n′ that

have equal first degree hashes also have equal N-degree hashes. Then,
⋃

ni∈[Pn]

Qni
is isomorphic to⋃

n′
i∈[Pn′]

Qni
via the map M(ni) = n′i where In(ni) = In′(n′i).

Proof. The proof is by contradiction. Assume that hN(n) = hN(n′) but M is not an isomorphism.

For simplicity, let Q =
⋃

ni∈[Pn]

Qni
and Q′ =

⋃
ni∈[Pn′]

Qn′
i
. So, there exists a quad q =< s, p, o, g > in

Q such that M(q) =< M(s), p,M(o),M(g) > is not in Q′. Because Q is the collection of quads
that mention each blank node ni, at least one component of q contains a blank node ni for some i.

Case 1. The only blank node mentioned by q is ni.
Let ni be the blank node that q mentions. Without loss of generality, assume that ni appears only
in the subject of q. So q =< ni, p, o, g > where o and g are nonblank. Further, < n′i, p, o, g > is
not in Q′. By Lemma 3.2, hf (ni) = hf (n′i). Because q mentions ni, its serialization < a, p, o, g >
is included in the first degree hash of ni. Therefore, the serialization of < a, p, o, g > must also
appear in hf (ni) since hf (ni) = hf (n′i). When computing hf (n′i), n

′
i is the unique node that can

produce the label a in the component of a quad. Furthermore, because o and g are nonblank,
they also uniquely carry their respective identifiers. Therefore, the only quad that can produce
this serialization is < n′i, p, o, g >. We assumed that no such quad existed. =⇒⇐=

Case 2. q mentions ni, a blank node w, and a nonblank node η.
Without loss of generality, assume q =< ni, p, w, η >. Then, there is no quad of the form
< n′i, p,M(w), η > in Q′. However, ni and n′i must have the same related hash list Hi since each
of their related hashes is appended to the data string in r(i). Any discrepancy in their related
hash lists would result in a related hash that appears in one string but not the other. Because
ni is related to w via q, the related hash x = h(“o < p > In(w)”) must appear in Hi, where
In(w) = hf (w) if w did not have a label at the time x was computed. Furthermore, T (x) must
have the same number of copies of the label In(w) appended to x in both Dn and Dn′ . Because
q will produce one copy of In(w) in Dn, there must be a quad q′ ∈ Q′ that contributes a copy of
In(w) to T (x). Thus, q′ must mention n′i and M(w) together, with M(w) in the object. And, if
q′ is to account for the missing copy of In(w) in Dn′ , M−1(q′) cannot be in Q.

Any introduction of a quad q′ cannot change the first degree hash of n′i since hf (ni) = hf (n′i).
Note: if q′ were to contribute a first degree hash different from q, we would need to introduce
another quad to account for this change. This process would end in a contradiction because
there are only finitely many quads.

So, because < ni, p, w, η > is replaced with < a, p, z, η >, q′ must make this same replacement.
Therefore, q′ must have n′i in the subject and η in the graph component (since η is a unique
nonblank identifier). Recall, however, that M(w) must also be in the object to produce the
related hash x. Thus, q′ =< n′i, p,M(w), η > necessarily. =⇒ ⇐= We assumed that no such
quad existed.

Case 3. q mentions ni and two blank nodes w1 and w2.
Without loss of generality, assume q =< ni, p, w1, w2 > with w1 6= ni and w2 6= ni. Note that

27

3.2 The Case of Equal N -Degree Hashes

if w2 = ni, for example, this case would be similar to case 2 where q would be replaced with
< a, p, z, a > in hf (ni), forcing the graph component of q′i to be n′i.

By assumption, there is no quad of the form < n′i, p,M(w1),M(w2) > in Q′. As in case 2, ni and
n′i must have the same related hash list Hi. Because ni is related to w1 and w2 via q, the related
hashes x1 = h(“o < p > In(w1)”) and h(“gIn(w2)”) must appear in Hi. Note: In(w1) = hf (w1)
if w1 did not have a label at the time x was computed, and similarly for In(w2). Furthermore,
T (x1) must have the same number of copies of the label In(w1) appended to x1 and T (x2) must
have the same number of copies of In(w2) appended to x2 in both Dn and Dn′ . Because q will
produce one copy of In(w1) in T (x1) and one copy of In(w2) in T (x2), there must be a quad
q′ ∈ Q′ that contributes these copies in Dn′ .

We note here that exactly one quad q′ must produce both these related hashes. For if two quads
were used, that would necessitate the existence of yet another quad in q′′ ∈ Q to maintain the
length of the first degree hash for ni. Every time a quad is introduced in one set, we must find
another quad in the other. Because there are only finitely many nodes, this would terminate in
a contradiction.

Thus, q′ must mention n′i together with M(w1) and M(w2) in the graph. If either of M(w1) and
M(w2) have previously been issued a label or if they have distinct first degree hashes, the related
hashes x1 and x2 force M(w1) to be in the object and M(w2) to be in the graph. This would
require q′ =< n′i, p,M(w1),M(w2) >, a contradiction.

Therefore, it must be that the first degree hashes hf (M(w1)) = hf (M(w2)) were used to compute
x1 and x2, allowing for q′ =< n′i, p,M(w1),M(w2) >. Because their first degree hashes were used
to compute these related hashes, M(w1) and M(w2) were unlabeled and can be denoted by some
n′j and n′` in [Pn′]. Thus, w1 = nj and w2 = n`.

Summarizing, we now have that q =< ni, p, nj, n` > and q′ =< n′i, p, n
′
`, n
′
j >. This leads to

several contradictions. For example, when recursing on n′`, q and q′ will contribute different re-
lated hashed for nj and n′j since the former will hash “o < p > bj” and the latter will hash “gbj”.
Additionally, the first degree hashes of n′j and n′` would be altered since the location of the a
in the replacement of q′ would be different from q. Regardless, we reach a contradiction. =⇒⇐=

Thus, in all three cases, we have shown that it is impossible for q ∈ Q and M(q) /∈ Q′. Therefore,
M is an isomorphism between Q and Q′.

Remark 3.4. The argument of the Temporary Labeling Theorem demonstrates that if Q contains a
quad < s, p, o, g >, but < M(s), p,M(o),M(g) > does not appear in Q′ it is impossible for Dn = Dn′.
It is important to note that every mention described by a gossip class will be encoded in the data to
hash when computing an N-degree hash.

Corollary 3.5. Suppose that two blank nodes n and n′ that have equal first degree hashes also have

equal N-degree hashes. Then, In(Q) = In′(Q′) where Q =
⋃

ni∈[Pn]

Qni
and Q′ =

⋃
ni∈[Pn′]

Qn′
i
.

Proof. By Theorem 3.3, Q ∼= Q′ via the subisomorphism M(ni) = n′i where In(ni) = In′(n′i). That
is, q =< s, p, o, g > is in Q if an only if M(q) =< M(s), p,M(o),M(g) > is in Q′. So, the

28

3.2 The Case of Equal N -Degree Hashes

labeled quad In(q) is in In(Q) if and only if the labeled quad In′(M(q)) is in In′(Q′). Because M is
the identity map on nonblank nodes, corresponding nonblank components in q and M(q) must be
labeled the same (namely with their nonblank identifier). And, because In(ni) = In′(M(ni)) for all
blank nodes ni in Q, all blank components must be labeled the same. Therefore, In(q) = In(M(q)).
Because this is true for any q ∈ Q, In(Q) = In′(Q′).

Corollary 3.5 shows that when two nodes n and n′ have both equal first degree hashes and equal
N -degree hashes, their sub-datasets will be labeled the same by their temporary issuers. We claim
that this fact supports the conclusion that when n and n′ have the same N -degree hash, the order
in which they are issued canonical identifiers does not matter.

Theorem 3.6 (The Repeated N -Degree Labeling Theorem). Suppose that n and n′ have the same
N-degree hash in the hash path list for a first degree hash hf . Then, the order in which In and In′

are used to issue canonical labels for the nodes of [Pn] and [Pn′] does not matter. That is, the labeled
list of quads that results in each case will be identical.

Proof. Suppose that n and n′ are such that hN(n) = hN(n′). Let Ln = {n0, n1, . . . , nk} and
Ln′ = {n′0, n′1, . . . , n′k} be the order in which In and In′ label the nodes of their respective gossip
classes. Let C1 = Ln⊕Ln′ and C2 = Ln′ ⊕Ln be the label orderings that result from concatenating
Ln and Ln′ in opposite order. We will show that

C1 (Q ∪Q′) = C2 (Q ∪Q′)

where Q =
⋃

ni∈[Pn]

Qni
and Q′ =

⋃
n′
i∈[P ′

n]

Qn′
i
.

That is, the labeled list of quads that results from issuing canonical labels according to C1 will be
the same as the labeled list of quads that results from issuing canonical labels according to C2.

Because n and n′ have the same N -degree hash, the Temporary Labeling Theorem implies that
M(ni) = n′i defines an isomorphism between Q and Q′. Furthermore, Corollary 3.5 implies that
In(Q) = In′(Q′).

1. Case 1. Ln ∩ Ln′ 6= ∅.

The Hash N-Degree Quads algorithm recurses until all nodes in the gossip class of the start-
ing node are issued a temporary label. So, if two gossip classes share a common unlabeled
node, those gossip classes necessarily consist of exactly the same list of unlabeled nodes.
Therefore, Ln and Ln′ are comprised of the same nodes. That is, Q = Q′.

Therefore, when issuing canonical labels for the ordering C1, the issuer first issues labels
to the nodes in Ln via In. When the issuer reaches the nodes in Ln′ , they have already
been issued canonical labels and their existing labels are returned by the canonical issuer
(as new labels are only distributed to unlabeled nodes). A similar claim is true for the
ordering C2. So, because In(Q) = In(Q′) and Q = Q′, the canonically labeled list of quads
produced in either case are identical. That is,

C1(Q ∪Q′) = C1(Q) = In(Q) = In(Q′) = C2(Q′) = C2(Q ∪Q′).

2. Case 2. Ln ∩ Ln′ = ∅.

29

3.2 The Case of Equal N -Degree Hashes

In this case, Q ∩ Q′ = ∅. In C1(Q ∪ Q′), the temporary labels b0, b1, . . . , bk in In(Q)
are replaced with the canonical labels c0, . . . , ck and the temporary labels b0, b1, . . . , bk
in I ′n(Q′) are replaced with the canonical labels ck+1, ck+2, . . . , c2k+1. In C1(Q ∪ Q′), the
temporary labels b0, b1, . . . , bk in In′(Q′) are replaced with the canonical labels c0, . . . , ck
instead, and the temporary labels b0, b1, . . . , bk in In(Q) are replaced with the canonical
labels ck+1, ck+2, . . . , c2k+1. But, recall that In(Q) = In(Q′). So, in either case, an identical
list of quads is ultimately produced.

In either case, C1 (Q ∪Q′) = C2 (Q ∪Q′). Therefore, when an N -degree hash is repeated in the hash
path list, the associated nodes can be issued canonical labels in any order. Note that this result
extends inductively when more than two results correspond to the same hash.

Lemma 3.7. Suppose that D and D′ are isomorphic RDF datasets. Then, Hf = H ′f . That is, D
and D′ have the same first degree hash list.

Proof. Assume that D ∼= D′. Then, there exists a dataset isomorphism M : D → D′.

Let n be a blank node in D, and let q ∈ Qn. Because M is a dataset isomorphism, q is in D′ if and
only if M(q) =< M(n), p,M(n′),M(g) > is in D′. Furthermore, M is the identity on nonblank
components, and M maps blank nodes to blank nodes. Without loss of generality, suppose that q =
< n, p, n′, g > where n′ 6= n is a blank node and g is nonblan. Then, M(q) =< M(n), p,M(n′), g >
where M(n) 6= M(n′) since n 6= n′ and M is a bijection. Thus, q is replaced with < a, p, z, g > in
hf (n) and M(q) is replaced with < a, p, z, g > in hf (M(n)). Because this will be true for a quad
q of any form in Qn, hf (n) = hf (M(n)). And, because n was an arbitrary blank node in D, we
conclude that Hf = H ′f .

Theorem 3.8 (The Canonical Labeling Theorem). Suppose that D and D′ are RDF datasets. Let
C and C ′ denote the final issuer states at the conclusion of URDNA2015 on D and D′, respectively.
Then, C(D) = C ′(D′) if and only if D is isomorphic to D′. That is, URDNA2015 produces a
canonical labeling for an RDF dataset.

Proof.

(→) Suppose that C(D) = C ′(D). Then, Define the mapping M : D → D′ as follows.

1. M maps the blank node n in D to the blank node n′ in D′ where C(n) = C ′(n′).
2. M is the identity on URIs and literals.

Note that M is well defined because C and C ′ are bijections on the blanks nodes in D and D′,
respectively. Then, q =< s, p, o, g > is in D if and only if C(q) is in C(D) if and only if there
exists a q′ in D′ such that C ′(q′) = C(q). By definition, q′ =< s′, p, o′, g′ > where C ′(q′) =
< C ′(s′), p, C ′(o′), C ′(g′) >=< C(s), p, C(o), C(g) > . Thus, q′ =< M(s), p,M(o),M(g) >
= M(q). So, we have shown that q ∈ D if and only if M(q) ∈ D′. By definition, M is a
dataset isomorphism and D ∼= D′.

(←) Suppose that D ∼= D′. Then, there exists a dataset isomorphism M : D → D′. By Lemma 3.7,
Hf = H ′f (that is, their first degree hash lists agree). URDNA2015 immediately distributes
canonical identifiers to those blank nodes whose first degree hash is unique. Thus, if n has a

30

3.3 URDNA2015 Terminates

unique first degree hash, C(n) = C ′(M(n)) since hf (n) = hf (M(n)) (by Lemma 3.7). There-
fore, C and C ′ necessarily agree on any blank node whose first degree hash is unique.

Now, consider a first degree hash hf that is repeated in HF = H ′F . Given n ∈ D and
M(n) ∈ D′ with first degree hash hf , we will show that Dn = DM(n). Then, n and M(n) will
have the same N -degree hash.

Suppose toward a contradiction that Dn 6= DM(n). Then, there exists a related hash x ∈ Hni

for some ni such that x contributes T (x) to Dni
but T (x) does not appear in DM(ni). Because

x is computed via mentions and M is mention-preserving, it must be that x ∈ HM(ni). So, the
distinction of T (x) in DM(ni) must be due to the appearance of a different label ` (canonical
or temporary). However, each appearance of the label ` indicates the existence of a mention
of ` with related hash x. But again, n has all the same mentions as M(n) since M is an
isomorphism. In particular, their related hash list is identical. =⇒⇐=

Therefore, Dn = DM(n). Therefore, the hash path list for hf in D will be the same as the
hash path list for hf in D. If n and M(n) produce the same N -degree hash, then they will
produce the same temporary labeled lists of quads by Corollary 3.5. And, if n and n′ each have
the same N -degree hash, so will M(n) and M(n′), and by the Repeated N -Degree Labeling
Theorem, the order in which n and n′ (respectively, M(n) and M(n′)) are issued canonical
identifiers does not matter. Putting these facts together, the quads that are labeled by the
hash path list of hf in D will receive the same labels from C as the quads M(q) in the hash
path list of hf in D′ will receive from C ′.

Because this is true for the hash path list for any repeated first degree hash hf , we may
conclude that C(D) = C(D′).

Remark 3.9. Note that the final issuer state C is inherently a dataset isomorphism between D and
C(D). Therefore, since D ∼= C(D) and C(D) = C ′(D′), the labeling is indeed canonical.

3.3 URDNA2015 Terminates

Finally, it is important to note that URDNA2015 does indeed terminate. If all first degree hashes
are unique, then step 6 of the algorithm is skipped. That is, HN is never run. So, HN never
recurses and the canonicalized dataset is returned in step 8 after looping over finitely many first
degree hashes. So, it suffices to show that when HN is necessary, the algorithm terminates.

When a first degree hash is non-unique, there are only finitely many blank nodes that produce it.
HN is run on each of these nodes in step 6 of URDNA2015. Any node is related to finitely many
blank nodes and therefore there are finitely many permutations over which HN loops. Furthermore,
within each permutation HN only recurses once on each blank node (the first time it is issued
a label). Therefore, HN necessarily terminates when running on a blank node n. So, step 6 of
URDNA2015 will be complete after looping over all nodes that produced the non-unique hash,
and ultimately the canonicalized dataset is returned in step 8. That is, URDNA2015 terminates,
returning an RDF dataset with canonical labels issued to all blank nodes. The same graph will

31

produce the same labeling (regardless of which party runs the algorithm) and different graphs will
produce different labelings (as guaranteed by the Canonical Labeling Theorem).

A Notation Index

D an RDF dataset
q a quad < s, p, o, g > where s = subject, p = predicate, o = object, and g = graph
n a blank node in D
Qn the set of all quads in D that mention n
pnn′ a gossip path from n to n′.
[Pn] the gossip class of n
h cryptographic hash function
HF the Hash First Degree Quads algorithm
hf (n) the first degree hash of n
Hf the set of all first degree hashes in D
HR the Hash Related Nodes algorithm
hr(q, n, n

′, position) the related hash of n describing how q ∈ Qn mentions n′

Hn the set of all related hashes for n
HN the Hash N-Degree Quads algorithm
hN(n) the N -degree hash of n
Dn the HN data to hash such that hN(n) = h(Dn)
In the issuer that issues temporary labels when executing HN on n
bi a temporary label for a node ni issued by In
C the canonical label issuer for D
cn the canonical label for n issued by C

References

[1] RDF N-Quads Format. Gavin Carothers. W3C. 25 February 2014. W3C Recommendation. URL:
https://www.w3.org/TR/n-quads/

[2] RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lan-
thaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/

rdf11-concepts/

[3] RDF Dataset Normalization. Dave Longley. W3C Community Group Draft Report. URL:
https://json-ld.github.io/normalization/spec/#bib-rdf11-concepts

32

https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://json-ld.github.io/normalization/spec/#bib-rdf11-concepts

	Introduction
	``Mentions'' as the Edges of an RDF Dataset

	Encoding Information Connected to a Blank Node
	First Degree Hashes
	N-Degree Hashes
	Related Hashes
	Gossip Paths
	Computing N-Degree Hashes at a High Level
	The Terms of a Node's Data to Hash
	Encoding Gossip Paths with the Hash N-Degree Quads Algorithm
	Distributing Canonical Labels Via bold0mu mumu NN@tempa @tempa NNNN-Degree Hashes

	The Canonical Labeling of URDNA2015
	RDF Dataset Comparison
	The Case of Equal N-Degree Hashes
	URDNA2015 Terminates

	Notation Index

