力扣加加 - 努力做西湖区最好的算法题解
  • introduction
  • 第一章 - 算法专题
    • 数据结构
    • 链表专题
    • 树专题
    • 堆专题(上)
    • 堆专题(下)
    • 二分专题(上)
    • 二分专题(下)
    • 动态规划(重置版)
    • 大话搜索
    • 二叉树的遍历
    • 哈夫曼编码和游程编码
    • 布隆过滤器
    • 前缀树
    • 回溯
    • 滑动窗口(思路 + 模板)
    • 位运算
    • 小岛问题
    • 最大公约数
    • 并查集
    • 平衡二叉树专题
    • 蓄水池抽样
    • 单调栈
  • 第二章 - 91 天学算法
    • 91 天学算法第三期视频会议总结
    • 第一期讲义-二分法
    • 第一期讲义-双指针
    • 第三期正在火热进行中
  • 第三章 - 精选题解
    • 字典序列删除
    • 西法的刷题秘籍】一次搞定前缀和
    • 字节跳动的算法面试题是什么难度?
    • 字节跳动的算法面试题是什么难度?(第二弹)
    • 《我是你的妈妈呀》 * 第一期
    • 一文带你看懂二叉树的序列化
    • 穿上衣服我就不认识你了?来聊聊最长上升子序列
    • 你的衣服我扒了 * 《最长公共子序列》
    • 一文看懂《最大子序列和问题》
  • 第四章 - 高频考题(简单)
    • 面试题 17.12. BiNode
    • 0001. 两数之和
    • 0020. 有效的括号
    • 0021. 合并两个有序链表
    • 0026. 删除排序数组中的重复项
    • 0053. 最大子序和
    • 0160. 相交链表
    • 0066. 加一
    • 0088. 合并两个有序数组
    • 0101. 对称二叉树
    • 0104. 二叉树的最大深度
    • 0108. 将有序数组转换为二叉搜索树
    • 0121. 买卖股票的最佳时机
    • 0122. 买卖股票的最佳时机 II
    • 0125. 验证回文串
    • 0136. 只出现一次的数字
    • 0155. 最小栈
    • 0167. 两数之和 II 输入有序数组
    • 0169. 多数元素
    • 0172. 阶乘后的零
    • 0190. 颠倒二进制位
    • 0191. 位 1 的个数
    • 0198. 打家劫舍
    • 0203. 移除链表元素
    • 0206. 反转链表
    • 0219. 存在重复元素 II
    • 0226. 翻转二叉树
    • 0232. 用栈实现队列
    • 0263. 丑数
    • 0283. 移动零
    • 0342. 4 的幂
    • 0349. 两个数组的交集
    • 0371. 两整数之和
    • 401. 二进制手表
    • 0437. 路径总和 III
    • 0455. 分发饼干
    • 0504. 七进制数
    • 0575. 分糖果
    • 0665. 非递减数列
    • 0661. 图片平滑器
    • 821. 字符的最短距离
    • 0874. 模拟行走机器人
    • 1128. 等价多米诺骨牌对的数量
    • 1260. 二维网格迁移
    • 1332. 删除回文子序列
    • 2591. 将钱分给最多的儿童
  • 第五章 - 高频考题(中等)
    • 面试题 17.09. 第 k 个数
    • 面试题 17.23. 最大黑方阵
    • 面试题 16.16. 部分排序
    • Increasing Digits
    • Longest Contiguously Strictly Increasing Sublist After Deletion
    • Consecutive Wins
    • Number of Substrings with Single Character Difference
    • Bus Fare
    • Minimum Dropping Path Sum
    • Every Sublist Min Sum
    • Maximize the Number of Equivalent Pairs After Swaps
    • 0002. 两数相加
    • 0003. 无重复字符的最长子串
    • 0005. 最长回文子串
    • 0011. 盛最多水的容器
    • 0015. 三数之和
    • 0017. 电话号码的字母组合
    • 0019. 删除链表的倒数第 N 个节点
    • 0022. 括号生成
    • 0024. 两两交换链表中的节点
    • 0029. 两数相除
    • 0031. 下一个排列
    • 0033. 搜索旋转排序数组
    • 0039. 组合总和
    • 0040. 组合总和 II
    • 0046. 全排列
    • 0047. 全排列 II
    • 0048. 旋转图像
    • 0049. 字母异位词分组
    • 0050. Pow(x, n)
    • 0055. 跳跃游戏
    • 0056. 合并区间
    • 0060. 第 k 个排列
    • 0061. 旋转链表
    • 0062. 不同路径
    • 0073. 矩阵置零
    • 0075. 颜色分类
    • 0078. 子集
    • 0079. 单词搜索
    • 0080. 删除排序数组中的重复项 II
    • 0086. 分隔链表
    • 0090. 子集 II
    • 0091. 解码方法
    • 0092. 反转链表 II
    • 0094. 二叉树的中序遍历
    • 0095. 不同的二叉搜索树 II
    • 0096. 不同的二叉搜索树
    • 0098. 验证二叉搜索树
    • 0102. 二叉树的层序遍历
    • 0103. 二叉树的锯齿形层次遍历
    • 0113. 路径总和 II
    • 0129. 求根到叶子节点数字之和
    • 0130. 被围绕的区域
    • 0131. 分割回文串
    • 0139. 单词拆分
    • 0144. 二叉树的前序遍历
    • 0147. 对链表进行插入排序
    • 0150. 逆波兰表达式求值
    • 0152. 乘积最大子数组
    • 0153. 寻找旋转排序数组中的最小值
    • 0199. 二叉树的右视图
    • 0200. 岛屿数量
    • 0201. 数字范围按位与
    • 0208. 实现 Trie (前缀树)
    • 0209. 长度最小的子数组
    • 0211. 添加与搜索单词 - 数据结构设计
    • 0215. 数组中的第 K 个最大元素
    • 0220. 存在重复元素 III
    • 0221. 最大正方形
    • 0227. 基本计算器 II
    • 0229. 求众数 II
    • 0230. 二叉搜索树中第 K 小的元素
    • 0236. 二叉树的最近公共祖先
    • 0238. 除自身以外数组的乘积
    • 0240. 搜索二维矩阵 II
    • 0279. 完全平方数
    • 0309. 最佳买卖股票时机含冷冻期
    • 0322. 零钱兑换
    • 0324. 摆动排序 II
    • 0328. 奇偶链表
    • 0331. 验证二叉树的前序序列化
    • 0334. 递增的三元子序列
    • 0337. 打家劫舍 III
    • 0343. 整数拆分
    • 0365. 水壶问题
    • 0378. 有序矩阵中第 K 小的元素
    • 0380. 常数时间插入、删除和获取随机元素
    • 0394. 字符串解码
    • 0416. 分割等和子集
    • 0424. 替换后的最长重复字符
    • 0438. 找到字符串中所有字母异位词
    • 0445. 两数相加 II
    • 0454. 四数相加 II
    • 0456. 132 模式
    • 0457.457. 环形数组是否存在循环
    • 0464. 我能赢么
    • 0470. 用 Rand7() 实现 Rand10
    • 0473. 火柴拼正方形
    • 0494. 目标和
    • 0516. 最长回文子序列
    • 0513. 找树左下角的值
    • 0518. 零钱兑换 II
    • 0525. 连续数组
    • 0547. 朋友圈
    • 0560. 和为 K 的子数组
    • 0609. 在系统中查找重复文件
    • 0611. 有效三角形的个数
    • 0673. 最长递增子序列的个数
    • 0686. 重复叠加字符串匹配
    • 0710. 黑名单中的随机数
    • 0714. 买卖股票的最佳时机含手续费
    • 0718. 最长重复子数组
    • 0735. 行星碰撞
    • 0754. 到达终点数字
    • 0785. 判断二分图
    • 0790. 多米诺和托米诺平铺
    • 0799. 香槟塔
    • 0801. 使序列递增的最小交换次数
    • 0816. 模糊坐标
    • 0820. 单词的压缩编码
    • 0838. 推多米诺
    • 0873. 最长的斐波那契子序列的长度
    • 0875. 爱吃香蕉的珂珂
    • 0877. 石子游戏
    • 0886. 可能的二分法
    • 0898. 子数组按位或操作
    • 0900. RLE 迭代器
    • 0911. 在线选举
    • 0912. 排序数组
    • 0932. 漂亮数组
    • 0935. 骑士拨号器
    • 0947. 移除最多的同行或同列石头
    • 0959. 由斜杠划分区域
    • 0978. 最长湍流子数组
    • 0987. 二叉树的垂序遍历
    • 1004. 最大连续 1 的个数 III
    • 1011. 在 D 天内送达包裹的能力
    • 1014. 最佳观光组合
    • 1015. 可被 K 整除的最小整数
    • 1019. 链表中的下一个更大节点
    • 1020. 飞地的数量
    • 1023. 驼峰式匹配
    • 1031. 两个非重叠子数组的最大和
    • 1043. 分隔数组以得到最大和
    • 1053. 交换一次的先前排列)
    • 1104. 二叉树寻路
    • 1129. 颜色交替的最短路径
    • 1131.绝对值表达式的最大值
    • 1138. 字母板上的路径
    • 1186. 删除一次得到子数组最大和
    • 1218. 最长定差子序列
    • 1227. 飞机座位分配概率
    • 1261. 在受污染的二叉树中查找元素
    • 1262. 可被三整除的最大和
    • 1297. 子串的最大出现次数
    • 1310. 子数组异或查询
    • 1334. 阈值距离内邻居最少的城市
    • 1371.每个元音包含偶数次的最长子字符串
    • 1381. 设计一个支持增量操作的栈
    • 1438. 绝对差不超过限制的最长连续子数组
    • 1558. 得到目标数组的最少函数调用次数
    • 1574. 删除最短的子数组使剩余数组有序
    • 1631. 最小体力消耗路径
    • 1638. 统计只差一个字符的子串数目
    • 1658. 将 x 减到 0 的最小操作数
    • 1697. 检查边长度限制的路径是否存在
    • 1737. 满足三条件之一需改变的最少字符数
    • 1770. 执行乘法运算的最大分数
    • 1793. 好子数组的最大分数
    • 1834. 单线程 CPU
    • 1899. 合并若干三元组以形成目标三元组
    • 1904. 你完成的完整对局数
    • 1906. 查询差绝对值的最小值
    • 1906. 查询差绝对值的最小值
    • 2007. 从双倍数组中还原原数组
    • 2008. 出租车的最大盈利
    • 2100. 适合打劫银行的日子
    • 2101. 引爆最多的炸弹
    • 2121. 相同元素的间隔之和
    • 2207. 字符串中最多数目的子字符串
    • 2592. 最大化数组的伟大值
    • 2593. 标记所有元素后数组的分数
    • 2817. 限制条件下元素之间的最小绝对差
    • 2865. 美丽塔 I
    • 2866. 美丽塔 II
    • 2939. 最大异或乘积
    • 3377. 使两个整数相等的数位操作
    • 3404. 统计特殊子序列的数目
    • 3428. 至多 K 个子序列的最大和最小和
  • 第六章 - 高频考题(困难)
    • LCP 20. 快速公交
    • LCP 21. 追逐游戏
    • Number Stream to Intervals
    • Triple-Inversion
    • Kth-Pair-Distance
    • Minimum-Light-Radius
    • Largest Equivalent Set of Pairs
    • Ticket-Order.md
    • Connected-Road-to-Destination
    • 0004. 寻找两个正序数组的中位数
    • 0023. 合并 K 个升序链表
    • 0025. K 个一组翻转链表
    • 0030. 串联所有单词的子串
    • 0032. 最长有效括号
    • 0042. 接雨水
    • 0052. N 皇后 II
    • 0057. 插入区间
    • 0065. 有效数字
    • 0084. 柱状图中最大的矩形
    • 0085. 最大矩形
    • 0087. 扰乱字符串
    • 0124. 二叉树中的最大路径和
    • 0128. 最长连续序列
    • 0132. 分割回文串 II
    • 0140. 单词拆分 II
    • 0145. 二叉树的后序遍历
    • 0146. LRU 缓存机制
    • 0154. 寻找旋转排序数组中的最小值 II
    • 0212. 单词搜索 II
    • 0239. 滑动窗口最大值
    • 0295. 数据流的中位数
    • 0297. 二叉树的序列化与反序列化
    • 0301. 删除无效的括号
    • 0312. 戳气球
    • 330. 按要求补齐数组
    • 0335. 路径交叉
    • 0460. LFU 缓存
    • 0472. 连接词
    • 0480. 滑动窗口中位数
    • 0483. 最小好进制
    • 0488. 祖玛游戏
    • 0493. 翻转对
    • 0664. 奇怪的打印机
    • 0679. 24 点游戏
    • 0715. Range 模块
    • 0726. 原子的数量
    • 0768. 最多能完成排序的块 II
    • 0805. 数组的均值分割
    • 0839. 相似字符串组
    • 0887. 鸡蛋掉落
    • 0895. 最大频率栈
    • 0975. 奇偶跳
    • 0995. K 连续位的最小翻转次数
    • 1032. 字符流
    • 1168. 水资源分配优化
    • 1178. 猜字谜
    • 1203. 项目管理
    • 1255. 得分最高的单词集合
    • 1345. 跳跃游戏 IV
    • 1449. 数位成本和为目标值的最大数字
    • 1494. 并行课程 II
    • 1521. 找到最接近目标值的函数值
    • 1526. 形成目标数组的子数组最少增加次数
    • 1639. 通过给定词典构造目标字符串的方案数
    • 1649. 通过指令创建有序数组
    • 1671. 得到山形数组的最少删除次数
    • 1707. 与数组中元素的最大异或值
    • 1713. 得到子序列的最少操作次数
    • 1723. 完成所有工作的最短时间
    • 1787. 使所有区间的异或结果为零
    • 1835. 所有数对按位与结果的异或和
    • 1871. 跳跃游戏 VII
    • 1872. 石子游戏 VIII
    • 1883. 准时抵达会议现场的最小跳过休息次数
    • 1970. 你能穿过矩阵的最后一天
    • 2009. 使数组连续的最少操作数
    • 2025. 分割数组的最多方案数
    • 2030. 含特定字母的最小子序列
    • 2102. 序列顺序查询
    • 2141. 同时运行 N 台电脑的最长时间
    • 2179. 统计数组中好三元组数目 👍
    • 2209. 用地毯覆盖后的最少白色砖块
    • 2281.sum-of-total-strength-of-wizards
    • 2306. 公司命名
    • 2312. 卖木头块
    • 2842. 统计一个字符串的 k 子序列美丽值最大的数目
    • 2972. 统计移除递增子数组的数目 II
    • 3027. 人员站位的方案数 II
    • 3041. 修改数组后最大化数组中的连续元素数目
    • 3082. 求出所有子序列的能量和
    • 3108. 带权图里旅途的最小代价
    • 3347. 执行操作后元素的最高频率 II
    • 3336. 最大公约数相等的子序列数量
    • 3410. 删除所有值为某个元素后的最大子数组和
  • 后序
由 GitBook 提供支持
在本页
  • 前置知识
  • 公司
  • 回溯法(超时)
  • 动态规划
  • 相关题目
  • 总结

这有帮助吗?

  1. 第六章 - 高频考题(困难)

0312. 戳气球

题目地址(312. 戳气球)

https://leetcode-cn.com/problems/burst-balloons/

题目描述

有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。每当你戳破一个气球 i 时,你可以获得 nums[left] * nums[i] * nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球 left 和气球 right 就变成了相邻的气球。

求所能获得硬币的最大数量。

说明:

你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。
0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
示例:

输入: [3,1,5,8]
输出: 167
解释: nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
     coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

前置知识

  • 回溯法

  • 动态规划

公司

  • 阿里

  • 腾讯

  • 百度

  • 字节

回溯法(超时)

回溯法

这道题就是要戳破所有的气球,求获得硬币的最大数量。我的第一反应就是暴力回溯。

但是这种暴力算法肯定会超时,为什么呢?因为题目给的气球数量有点多,最多 500 个;500 的阶乘,会超时爆栈;但是我们依然写一下代码,找下突破口,小伙伴们千万不要看不起暴力,暴力是优化的突破口;

如果小伙伴对回溯法不太熟悉,我建议你记住下面的模版,也可以看我之前写的文章,回溯法基本可以使用以下的模版写。

代码

var maxCoins = function (nums) {
  let res = Number.MIN_VALUE;
  backtrack(nums, 0);
  return res;
  // 回溯法,状态树很大
  function backtrack(nums, score) {
    if (nums.length == 0) {
      res = Math.max(res, score);
      return;
    }
    for (let i = 0, n = nums.length; i < n; i++) {
      let point =
        (i - 1 < 0 ? 1 : nums[i - 1]) *
        nums[i] *
        (i + 1 >= n ? 1 : nums[i + 1]);
      let tempNums = [].concat(nums);
      // 做选择 在 nums 中删除元素 nums[i]
      nums.splice(i, 1);
      // 递归回溯
      backtrack(nums, score + point);
      // 撤销选择
      nums = [...tempNums];
    }
  }
};

动态规划

思路

回溯法的缺点也很明显,复杂度很高,小伙伴们可以脑补一下执行过程的状态树,这里我偷个懒就不画了;

通过仔细观察这个状态树,我们会发现这个状态树的【选择】上,会有一些重复的选择分支;很明显存在了重复子问题;自然我就想到了能不能用动态规划来解决;

判读能不能用动态规划解决,还有一个问题,就是必须存在最优子结构;什么意思呢?其实就是根据局部最优,推导出答案;假设我们戳破第 k 个气球是最优策略的最后一步,和上一步有没有联系呢?根据题目意思,戳破第 k 个,前一个和后一个就变成相邻的了。由于这种不稳定性,导致问题难以处理。一种解决方案是反向思考。即我们不是给你一个 nums,一个个移除数。而是从空数组开始一个个添加。

由于题目说明了 nums 左右各存在一个虚拟的气球,因此这里说的空数组实际指的是 [1,1] 这种情况,即只有两个虚拟数字。

经过这样的反向思考,问题就变得简单起来了。经过这样的思考之后就使用动态规划解决就 ok 了。

既然用动态规划,那就老套路了,把动态规划的三个问题想清楚定义好;然后找出题目的【状态】和【选择】,然后根据【状态】枚举,枚举的过程中根据【选择】计算递推就能得到答案了。

那本题的【选择】是什么呢?就是戳哪一个气球。那【状态】呢?就是题目给的气球数量。

  1. 定义状态

这里有个细节,就是题目说明有两个虚拟气球,nums[-1] = nums[n] = 1;如果当前戳破的气球是最后一个或者第一个,前面/后面没有气球了,不能乘以 0,而是乘以 1。

定义状态的最关键两个点,往子问题(问题规模变小)想,最后一步最优策略是什么;我们假设最后戳破的气球是 k,戳破 k 获得最大数量的银币就是 nums[i] * nums[k] * nums[j] 再加上前面戳破的最大数量和后面的最大数量,即:nums[i] * nums[k] * nums[j] + 前面最大数量 + 后面最大数量。

那我们可以这样来定义状态,dp[i][j] = x 表示:戳破气球 i 和气球 j 之间(开区间,不包括 i 和 j)的所有气球,可以获得的最大硬币数为 x。为什么开区间?因为不能和已经计算过的产生联系,我们这样定义之后,利用两个虚拟气球 就可完成本题。

  1. 状态转移方程

而对于 dp[i][j],i 和 j 之间会有很多气球,到底该戳哪个先呢?我们直接设为 k,枚举选择最优的 k 就可以了。所以,最终的状态转移方程为:dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] + nums[k] * nums[i] * nums[j])。由于是开区间,因此 k 为 i + 1, i + 2... j - 1。

这就是典型的枚举分割点 ”区间 DP“,大家一定要掌握哦~

  1. 初始值和边界

由于我们利用了两个虚拟气球,边界就是气球数 n + 2,当 i == j 时,很明显两个之间没有气球,为 0;

  1. 如何枚举状态

因为我们最终要求的答案是 dp[0][n + 1],就是戳破虚拟气球之间的所有气球获得的最大值。当 i == j 时,i 和 j 之间是没有气球的,所以枚举的状态很明显是 dp table 的左上部分,也就是 j 大于 i,如下图所示,只给出一部分方便思考。

图有错误。图中 dp[k][i] 应该是 dp[i][k],dp[j][k] 应该是 dp[k][j]

从上图可以看出,我们需要从下到上,从左到右进行遍历。

关键点

  • 区间 DP

  • 反向思考。不是戳气球,而是添加气球。

  • 遍历方向的确定

代码

代码支持: JS, Python

JS Code:

var maxCoins = function (nums) {
  let n = nums.length;
  // 添加两侧的虚拟气球
  let points = [1, ...nums, 1];
  let dp = Array.from(Array(n + 2), () => Array(n + 2).fill(0));
  // 最后一行开始遍历,从下往上
  for (let i = n; i >= 0; i--) {
    // 从左往右
    for (let j = i + 1; j < n + 2; j++) {
      for (let k = i + 1; k < j; k++) {
        dp[i][j] = Math.max(
          dp[i][j],
          points[j] * points[k] * points[i] + dp[i][k] + dp[k][j]
        );
      }
    }
  }
  return dp[0][n + 1];
};

Python Code:

class Solution:
    def maxCoins(self, nums: List[int]) -> int:
        n = len(nums)
        points = [1] + nums + [1]
        dp = [[0] * (n + 2) for _ in range(n + 2)]

        for i in range(n, -1, -1):
            for j in range(i + 1, n + 2):
                for k in range(i + 1, j):
                    dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] + points[i] * points[k] * points[j])
        return dp[0][-1]

复杂度分析

令 n 为数组长度。

  • 时间复杂度:$O(n ^ 3)$

  • 空间复杂度:$O(n ^ 2)$

如果使用记忆化递归,时间复杂度和上面一样,空间复杂度是 $O(n)$,但是在力扣提交会超时,大家作为参考即可。

Python3 Code:

class Solution:
    def maxCoins(self, nums: List[int]) -> int:
        n = len(nums)
        nums = [1] + nums + [1]

        @lru_cache(None)
        def dp(left, right):
            if left + 1 == right:
                return 0
            if left + 2 == right:
                return nums[left] * nums[left + 1] * nums[left + 2]
            ans = 0
            for i in range(left + 1, right):
                ans = max(ans, nums[i] * nums[left] * nums[right] + dp(left, i) + dp(i, right))
            return ans

        return dp(0, len(nums) - 1)

相关题目

总结

简单的 dp 题目会直接告诉你怎么定义状态,告诉你怎么选择计算,你只需要根据套路判断一下能不能用 dp 解题即可,而判断能不能,往往暴力就是突破口。

这道题如果从空数组反向思考,则避免了因为数组变化导致的状态变化而难以处理的问题,是一种常见的技巧。另外此题属于典型的分割 DP 问题。区间问题通常都是两层循环枚举所有的左右端点,再用一层循环枚举所有的割点,也就是三层循环,时间复杂度也是 $O(n^3)$。

更多题解可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 30K star 啦。

关注公众号力扣加加,努力用清晰直白的语言还原解题思路,并且有大量图解,手把手教你识别套路,高效刷题。

上一页0301. 删除无效的括号下一页330. 按要求补齐数组

最后更新于2年前

这有帮助吗?

Maximum-Additive-Score-by-Removing-Numbers