Quickstart (MCP with BigQuery)

How to get started running Toolbox with MCP Inspector and BigQuery as the source.

Overview

Model Context Protocol is an open protocol that standardizes how applications provide context to LLMs. Check out this page on how to connect to Toolbox via MCP.

Step 1: Set up your BigQuery Dataset and Table

In this section, we will create a BigQuery dataset and a table, then insert some data that needs to be accessed by our agent.

  1. Create a new BigQuery dataset (replace YOUR_DATASET_NAME with your desired dataset name, e.g., toolbox_mcp_ds, and optionally specify a location like US or EU):

    export BQ_DATASET_NAME="YOUR_DATASET_NAME"
    export BQ_LOCATION="US"
    
    bq --location=$BQ_LOCATION mk $BQ_DATASET_NAME
    

    You can also do this through the Google Cloud Console.

  2. The hotels table needs to be defined in your new dataset. First, create a file named create_hotels_table.sql with the following content:

    CREATE TABLE IF NOT EXISTS `YOUR_PROJECT_ID.YOUR_DATASET_NAME.hotels` (
      id            INT64 NOT NULL,
      name          STRING NOT NULL,
      location      STRING NOT NULL,
      price_tier    STRING NOT NULL,
      checkin_date  DATE NOT NULL,
      checkout_date DATE NOT NULL,
      booked        BOOLEAN NOT NULL
    );
    

    Note: Replace YOUR_PROJECT_ID and YOUR_DATASET_NAME in the SQL with your actual project ID and dataset name.

    Then run the command below to execute the sql query:

    bq query --project_id=$GOOGLE_CLOUD_PROJECT --dataset_id=$BQ_DATASET_NAME --use_legacy_sql=false < create_hotels_table.sql
    
  3. . Next, populate the hotels table with some initial data. To do this, create a file named insert_hotels_data.sql and add the following SQL INSERT statement to it.

    INSERT INTO `YOUR_PROJECT_ID.YOUR_DATASET_NAME.hotels` (id, name, location, price_tier, checkin_date, checkout_date, booked)
    VALUES
      (1, 'Hilton Basel', 'Basel', 'Luxury', '2024-04-20', '2024-04-22', FALSE),
      (2, 'Marriott Zurich', 'Zurich', 'Upscale', '2024-04-14', '2024-04-21', FALSE),
      (3, 'Hyatt Regency Basel', 'Basel', 'Upper Upscale', '2024-04-02', '2024-04-20', FALSE),
      (4, 'Radisson Blu Lucerne', 'Lucerne', 'Midscale', '2024-04-05', '2024-04-24', FALSE),
      (5, 'Best Western Bern', 'Bern', 'Upper Midscale', '2024-04-01', '2024-04-23', FALSE),
      (6, 'InterContinental Geneva', 'Geneva', 'Luxury', '2024-04-23', '2024-04-28', FALSE),
      (7, 'Sheraton Zurich', 'Zurich', 'Upper Upscale', '2024-04-02', '2024-04-27', FALSE),
      (8, 'Holiday Inn Basel', 'Basel', 'Upper Midscale', '2024-04-09', '2024-04-24', FALSE),
      (9, 'Courtyard Zurich', 'Zurich', 'Upscale', '2024-04-03', '2024-04-13', FALSE),
      (10, 'Comfort Inn Bern', 'Bern', 'Midscale', '2024-04-04', '2024-04-16', FALSE);
    

    Note: Replace YOUR_PROJECT_ID and YOUR_DATASET_NAME in the SQL with your actual project ID and dataset name.

    Then run the command below to execute the sql query:

    bq query --project_id=$GOOGLE_CLOUD_PROJECT --dataset_id=$BQ_DATASET_NAME --use_legacy_sql=false < insert_hotels_data.sql
    

Step 2: Install and configure Toolbox

In this section, we will download Toolbox, configure our tools in a tools.yaml, and then run the Toolbox server.

  1. Download the latest version of Toolbox as a binary:

    Tip

    Select the correct binary corresponding to your OS and CPU architecture.

    export OS="linux/amd64" # one of linux/amd64, darwin/arm64, darwin/amd64, or windows/amd64
    curl -O https://storage.googleapis.com/genai-toolbox/v0.7.0/$OS/toolbox
    
  2. Make the binary executable:

    chmod +x toolbox
    
  3. Write the following into a tools.yaml file. You must replace the YOUR_PROJECT_ID and YOUR_DATASET_NAME placeholder in the config with your actual BigQuery project and dataset name. The location field is optional; if not specified, it defaults to ‘us’. The table name hotels is used directly in the statements.

    Tip

    Authentication with BigQuery is handled via Application Default Credentials (ADC). Ensure you have run gcloud auth application-default login.

    sources:
      my-bigquery-source:
        kind: bigquery
        project: YOUR_PROJECT_ID
        location: us
    tools:
      search-hotels-by-name:
        kind: bigquery-sql
        source: my-bigquery-source
        description: Search for hotels based on name.
        parameters:
          - name: name
            type: string
            description: The name of the hotel.
        statement: SELECT * FROM `YOUR_DATASET_NAME.hotels` WHERE LOWER(name) LIKE LOWER(CONCAT('%', @name, '%'));
      search-hotels-by-location:
        kind: bigquery-sql
        source: my-bigquery-source
        description: Search for hotels based on location.
        parameters:
          - name: location
            type: string
            description: The location of the hotel.
        statement: SELECT * FROM `YOUR_DATASET_NAME.hotels` WHERE LOWER(location) LIKE LOWER(CONCAT('%', @location, '%'));
      book-hotel:
        kind: bigquery-sql
        source: my-bigquery-source
        description: >-
           Book a hotel by its ID. If the hotel is successfully booked, returns a NULL, raises an error if not.
        parameters:
          - name: hotel_id
            type: integer
            description: The ID of the hotel to book.
        statement: UPDATE `YOUR_DATASET_NAME.hotels` SET booked = TRUE WHERE id = @hotel_id;
      update-hotel:
        kind: bigquery-sql
        source: my-bigquery-source
        description: >-
          Update a hotel's check-in and check-out dates by its ID. Returns a message indicating whether the hotel was successfully updated or not.
        parameters:
          - name: checkin_date
            type: string
            description: The new check-in date of the hotel.
          - name: checkout_date
            type: string
            description: The new check-out date of the hotel.
          - name: hotel_id
            type: integer
            description: The ID of the hotel to update.
        statement: >-
          UPDATE `YOUR_DATASET_NAME.hotels` SET checkin_date = PARSE_DATE('%Y-%m-%d', @checkin_date), checkout_date = PARSE_DATE('%Y-%m-%d', @checkout_date) WHERE id = @hotel_id;
      cancel-hotel:
        kind: bigquery-sql
        source: my-bigquery-source
        description: Cancel a hotel by its ID.
        parameters:
          - name: hotel_id
            type: integer
            description: The ID of the hotel to cancel.
        statement: UPDATE `YOUR_DATASET_NAME.hotels` SET booked = FALSE WHERE id = @hotel_id;
    toolsets:
      my-toolset:
        - search-hotels-by-name
        - search-hotels-by-location
        - book-hotel
        - update-hotel
        - cancel-hotel
    

    For more info on tools, check out the Tools section.

  4. Run the Toolbox server, pointing to the tools.yaml file created earlier:

    ./toolbox --tools-file "tools.yaml"
    

Step 3: Connect to MCP Inspector

  1. Run the MCP Inspector:

    npx @modelcontextprotocol/inspector
    
  2. Type y when it asks to install the inspector package.

  3. It should show the following when the MCP Inspector is up and running:

    🔍 MCP Inspector is up and running at http://127.0.0.1:5173 🚀
    
  4. Open the above link in your browser.

  5. For Transport Type, select SSE.

  6. For URL, type in http://127.0.0.1:5000/mcp/sse.

  7. Click Connect.

    inspector

  8. Select List Tools, you will see a list of tools configured in tools.yaml.

    inspector_tools

  9. Test out your tools here!