Spanner using MCP
Model Context Protocol (MCP) is an open protocol for connecting Large Language Models (LLMs) to data sources like Spanner. This guide covers how to use MCP Toolbox for Databases to expose your developer assistant tools to a Spanner instance:
- Cursor
- Windsurf (Codium)
- Visual Studio Code (Copilot)
- Cline (VS Code extension)
- Claude desktop
- Claude code
Before you begin
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Make sure that billing is enabled for your Google Cloud project.
Set up the database
Configure the required roles and permissions to complete this task. You will need Cloud Spanner Database User role (
roles/spanner.databaseUser
) or equivalent IAM permissions to connect to the instance.Configured Application Default Credentials (ADC) for your environment.
Install MCP Toolbox
Download the latest version of Toolbox as a binary. Select the correct binary corresponding to your OS and CPU architecture. You are required to use Toolbox version V0.6.0+:
curl -O https://storage.googleapis.com/genai-toolbox/v0.7.0/linux/amd64/toolbox
curl -O https://storage.googleapis.com/genai-toolbox/v0.7.0/darwin/arm64/toolbox
curl -O https://storage.googleapis.com/genai-toolbox/v0.7.0/darwin/amd64/toolbox
curl -O https://storage.googleapis.com/genai-toolbox/v0.7.0/windows/amd64/toolbox
Make the binary executable:
chmod +x toolbox
Verify the installation:
./toolbox --version
Configure your MCP Client
Install Claude Code.
Create a
.mcp.json
file in your project root if it doesn’t exist.Add the following configuration, replace the environment variables with your values, and save:
Spanner with
googlesql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Spanner with
postgresql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner-postgres","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Restart Claude code to apply the new configuration.
Open Claude desktop and navigate to Settings.
Under the Developer tab, tap Edit Config to open the configuration file.
Add the following configuration, replace the environment variables with your values, and save:
Spanner with
googlesql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Spanner with
postgresql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner-postgres","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Restart Claude desktop.
From the new chat screen, you should see a hammer (MCP) icon appear with the new MCP server available.
Open the Cline extension in VS Code and tap the MCP Servers icon.
Tap Configure MCP Servers to open the configuration file.
Add the following configuration, replace the environment variables with your values, and save:
Spanner with
googlesql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Spanner with
postgresql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner-postgres","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
You should see a green active status after the server is successfully connected.
Create a
.cursor
directory in your project root if it doesn’t exist.Create a
.cursor/mcp.json
file if it doesn’t exist and open it.Add the following configuration, replace the environment variables with your values, and save:
Spanner with
googlesql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Spanner with
postgresql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner-postgres","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Cursor and navigate to Settings > Cursor Settings > MCP. You should see a green active status after the server is successfully connected.
Open VS Code and create a
.vscode
directory in your project root if it doesn’t exist.Create a
.vscode/mcp.json
file if it doesn’t exist and open it.Add the following configuration, replace the environment variables with your values, and save:
Spanner with
googlesql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Spanner with
postgresql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner-postgres","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Open Windsurf and navigate to the Cascade assistant.
Tap on the hammer (MCP) icon, then Configure to open the configuration file.
Add the following configuration, replace the environment variables with your values, and save:
Spanner with
googlesql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Spanner with
postgresql
dialect{ "mcpServers": { "spanner": { "command": "./PATH/TO/toolbox", "args": ["--prebuilt","spanner-postgres","--stdio"], "env": { "SPANNER_PROJECT": "", "SPANNER_INSTANCE": "", "SPANNER_DATABASE": "" } } } }
Use Tools
Your AI tool is now connected to Spanner using MCP. Try asking your AI assistant to list tables, create a table, or define and execute other SQL statements.
The following tools are available to the LLM:
- list_tables: lists tables and descriptions
- execute_sql: execute DML SQL statement
- execute_sql_dql: execute DQL SQL statement
Note
Prebuilt tools are pre-1.0, so expect some tool changes between versions. LLMs will adapt to the tools available, so this shouldn’t affect most users.