Skip to content

A powerful MCP Server that enables AI assistants like Claude to interact with humans through intuitive GUI dialogs. This server bridges the gap between automated AI processes and human decision-making by providing real-time user input tools, choices, confirmations, and feedback mechanisms.

License

Notifications You must be signed in to change notification settings

GongRzhe/Human-In-the-Loop-MCP-Server

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Human-In-the-Loop MCP Server

License: MIT PyPI version

A powerful Model Context Protocol (MCP) Server that enables AI assistants like Claude to interact with humans through intuitive GUI dialogs. This server bridges the gap between automated AI processes and human decision-making by providing real-time user input tools, choices, confirmations, and feedback mechanisms.

demo

πŸš€ Features

πŸ’¬ Interactive Dialog Tools

  • Text Input: Get text, numbers, or other data from users with validation
  • Multiple Choice: Present options for single or multiple selections
  • Multi-line Input: Collect longer text content, code, or detailed descriptions
  • Confirmation Dialogs: Ask for yes/no decisions before proceeding with actions
  • Information Messages: Display notifications, status updates, and results
  • Health Check: Monitor server status and GUI availability

🎨 Modern Cross-Platform GUI

  • Windows: Modern Windows 11-style interface with beautiful styling, hover effects, and enhanced visual design
  • macOS: Native macOS experience with SF Pro Display fonts and proper window management
  • Linux: Ubuntu-compatible GUI with modern styling and system fonts

⚑ Advanced Features

  • Non-blocking Operation: All dialogs run in separate threads to prevent blocking
  • Timeout Protection: Configurable 5-minute timeouts prevent hanging operations
  • Platform Detection: Automatic optimization for each operating system
  • Modern UI Design: Beautiful interface with smooth animations and hover effects
  • Error Handling: Comprehensive error reporting and graceful recovery
  • Keyboard Navigation: Full keyboard shortcuts support (Enter/Escape)

πŸ“¦ Installation & Setup

Quick Install with uvx (Recommended)

The easiest way to use this MCP server is with uvx:

# Install and run directly
uvx hitl-mcp-server

# Or use the underscore version
uvx hitl_mcp_server

Manual Installation

  1. Install from PyPI:

    pip install hitl-mcp-server
  2. Run the server:

    hitl-mcp-server
    # or
    hitl_mcp_server

Development Installation

  1. Clone the repository:

    git clone https://github.com/GongRzhe/Human-In-the-Loop-MCP-Server.git
    cd Human-In-the-Loop-MCP-Server
  2. Install in development mode:

    pip install -e .

πŸ”§ Claude Desktop Configuration

To use this server with Claude Desktop, add the following configuration to your claude_desktop_config.json:

Using uvx (Recommended)

{
  "mcpServers": {
    "human-in-the-loop": {
      "command": "uvx",
      "args": ["hitl-mcp-server"]
    }
  }
}

Using pip installation

{
  "mcpServers": {
    "human-in-the-loop": {
      "command": "hitl-mcp-server",
      "args": []
    }
  }
}

Configuration File Locations

  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Important Note for macOS Users

Note: You may need to allow Python to control your computer in System Preferences > Security & Privacy > Accessibility for the GUI dialogs to work properly.

After updating the configuration, restart Claude Desktop for the changes to take effect.

πŸ› οΈ Available Tools

1. get_user_input

Get single-line text, numbers, or other data from users.

Parameters:

  • title (str): Dialog window title
  • prompt (str): Question/prompt text
  • default_value (str): Pre-filled value (optional)
  • input_type (str): "text", "integer", or "float" (default: "text")

Example Usage:

result = await get_user_input(
    title="Project Setup",
    prompt="Enter your project name:",
    default_value="my-project",
    input_type="text"
)

2. get_user_choice

Present multiple options for user selection.

Parameters:

  • title (str): Dialog window title
  • prompt (str): Question/prompt text
  • choices (List[str]): Available options
  • allow_multiple (bool): Allow multiple selections (default: false)

Example Usage:

result = await get_user_choice(
    title="Framework Selection",
    prompt="Choose your preferred framework:",
    choices=["React", "Vue", "Angular", "Svelte"],
    allow_multiple=False
)

3. get_multiline_input

Collect longer text content, code, or detailed descriptions.

Parameters:

  • title (str): Dialog window title
  • prompt (str): Question/prompt text
  • default_value (str): Pre-filled text (optional)

Example Usage:

result = await get_multiline_input(
    title="Code Review",
    prompt="Please provide your detailed feedback:",
    default_value=""
)

4. show_confirmation_dialog

Ask for yes/no confirmation before proceeding.

Parameters:

  • title (str): Dialog window title
  • message (str): Confirmation message

Example Usage:

result = await show_confirmation_dialog(
    title="Delete Confirmation",
    message="Are you sure you want to delete these 5 files? This action cannot be undone."
)

5. show_info_message

Display information, notifications, or status updates.

Parameters:

  • title (str): Dialog window title
  • message (str): Information message

Example Usage:

result = await show_info_message(
    title="Process Complete",
    message="Successfully processed 1,247 records in 2.3 seconds!"
)

6. health_check

Check server status and GUI availability.

Example Usage:

status = await health_check()
# Returns detailed platform and functionality information

πŸ“‹ Response Format

All tools return structured JSON responses:

{
    "success": true,
    "user_input": "User's response text",
    "cancelled": false,
    "platform": "windows",
    "input_type": "text"
}

Common Response Fields:

  • success (bool): Whether the operation completed successfully
  • cancelled (bool): Whether the user cancelled the dialog
  • platform (str): Operating system platform
  • error (str): Error message if operation failed

Tool-Specific Fields:

  • get_user_input: user_input, input_type
  • get_user_choice: selected_choice, selected_choices, allow_multiple
  • get_multiline_input: user_input, character_count, line_count
  • show_confirmation_dialog: confirmed, response
  • show_info_message: acknowledged

🧠 Best Practices for AI Integration

When to Use Human-in-the-Loop Tools

  1. Ambiguous Requirements - When user instructions are unclear
  2. Decision Points - When you need user preference between valid alternatives
  3. Creative Input - For subjective choices like design or content style
  4. Sensitive Operations - Before executing potentially destructive actions
  5. Missing Information - When you need specific details not provided
  6. Quality Feedback - To get user validation on intermediate results

Example Integration Patterns

File Operations

# Get target directory
location = await get_user_input(
    title="Backup Location",
    prompt="Enter backup directory path:",
    default_value="~/backups"
)

# Choose backup type
backup_type = await get_user_choice(
    title="Backup Options",
    prompt="Select backup type:",
    choices=["Full Backup", "Incremental", "Differential"]
)

# Confirm before proceeding
confirmed = await show_confirmation_dialog(
    title="Confirm Backup",
    message=f"Create {backup_type['selected_choice']} backup to {location['user_input']}?"
)

if confirmed['confirmed']:
    # Perform backup
    await show_info_message("Success", "Backup completed successfully!")

Content Creation

# Get content requirements
requirements = await get_multiline_input(
    title="Content Requirements",
    prompt="Describe your content requirements in detail:"
)

# Choose tone and style
tone = await get_user_choice(
    title="Content Style",
    prompt="Select desired tone:",
    choices=["Professional", "Casual", "Friendly", "Technical"]
)

# Generate and show results
# ... content generation logic ...
await show_info_message("Content Ready", "Your content has been generated successfully!")

πŸ” Troubleshooting

Common Issues

GUI Not Appearing

  • Verify you're running in a desktop environment (not headless server)
  • Check if tkinter is installed: python -c "import tkinter"
  • Run health check: health_check() tool to diagnose issues

Permission Errors (macOS)

  • Grant accessibility permissions in System Preferences > Security & Privacy > Accessibility
  • Allow Python to control your computer
  • Restart terminal after granting permissions

Import Errors

  • Ensure package is installed: pip install hitl-mcp-server
  • Check Python version compatibility (>=3.8 required)
  • Verify virtual environment activation if using one

Claude Desktop Integration Issues

  • Check configuration file syntax and location
  • Restart Claude Desktop after configuration changes
  • Verify uvx is installed: pip install uvx
  • Test server manually: uvx hitl-mcp-server

Dialog Timeout

  • Default timeout is 5 minutes (300 seconds)
  • Dialogs will return with cancelled=true if user doesn't respond
  • Ensure user is present when dialogs are triggered

Debug Mode

Enable detailed logging by running the server with environment variable:

HITL_DEBUG=1 uvx hitl-mcp-server

πŸ—οΈ Development

Project Structure

Human-In-the-Loop-MCP-Server/
β”œβ”€β”€ human_loop_server.py       # Main server implementation
β”œβ”€β”€ pyproject.toml            # Package configuration
β”œβ”€β”€ README.md                 # Documentation
β”œβ”€β”€ LICENSE                   # MIT License
β”œβ”€β”€ .gitignore               # Git ignore rules
└── demo.gif                 # Demo animation

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes with proper testing
  4. Follow code style guidelines (Black, Ruff)
  5. Add type hints and docstrings
  6. Submit a pull request with detailed description

Code Quality

  • Formatting: Black (line length: 88)
  • Linting: Ruff with comprehensive rule set
  • Type Checking: MyPy with strict configuration
  • Testing: Pytest for unit and integration tests

🌍 Platform Support

Windows

  • Windows 10/11 with modern UI styling
  • Enhanced visual design with hover effects
  • Segoe UI and Consolas font integration
  • Full keyboard navigation support

macOS

  • Native macOS experience
  • SF Pro Display system fonts
  • Proper window management and focus
  • Accessibility permission handling

Linux

  • Ubuntu/Debian compatible
  • Modern styling with system fonts
  • Cross-distribution GUI support
  • Minimal dependency requirements

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

🀝 Acknowledgments

  • Built with FastMCP framework
  • Uses Pydantic for data validation
  • Cross-platform GUI powered by tkinter
  • Inspired by the need for human-AI collaboration

πŸ”— Links

πŸ“Š Usage Statistics

  • Cross-Platform: Windows, macOS, Linux
  • Python Support: 3.8, 3.9, 3.10, 3.11, 3.12+
  • GUI Framework: tkinter (built-in with Python)
  • Thread Safety: Full concurrent operation support
  • Response Time: < 100ms dialog initialization
  • Memory Usage: < 50MB typical operation

Made with ❀️ for the AI community - Bridging humans and AI through intuitive interaction

About

A powerful MCP Server that enables AI assistants like Claude to interact with humans through intuitive GUI dialogs. This server bridges the gap between automated AI processes and human decision-making by providing real-time user input tools, choices, confirmations, and feedback mechanisms.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages