A powerful Model Context Protocol (MCP) Server that enables AI assistants like Claude to interact with humans through intuitive GUI dialogs. This server bridges the gap between automated AI processes and human decision-making by providing real-time user input tools, choices, confirmations, and feedback mechanisms.
- Text Input: Get text, numbers, or other data from users with validation
- Multiple Choice: Present options for single or multiple selections
- Multi-line Input: Collect longer text content, code, or detailed descriptions
- Confirmation Dialogs: Ask for yes/no decisions before proceeding with actions
- Information Messages: Display notifications, status updates, and results
- Health Check: Monitor server status and GUI availability
- Windows: Modern Windows 11-style interface with beautiful styling, hover effects, and enhanced visual design
- macOS: Native macOS experience with SF Pro Display fonts and proper window management
- Linux: Ubuntu-compatible GUI with modern styling and system fonts
- Non-blocking Operation: All dialogs run in separate threads to prevent blocking
- Timeout Protection: Configurable 5-minute timeouts prevent hanging operations
- Platform Detection: Automatic optimization for each operating system
- Modern UI Design: Beautiful interface with smooth animations and hover effects
- Error Handling: Comprehensive error reporting and graceful recovery
- Keyboard Navigation: Full keyboard shortcuts support (Enter/Escape)
The easiest way to use this MCP server is with uvx
:
# Install and run directly
uvx hitl-mcp-server
# Or use the underscore version
uvx hitl_mcp_server
-
Install from PyPI:
pip install hitl-mcp-server
-
Run the server:
hitl-mcp-server # or hitl_mcp_server
-
Clone the repository:
git clone https://github.com/GongRzhe/Human-In-the-Loop-MCP-Server.git cd Human-In-the-Loop-MCP-Server
-
Install in development mode:
pip install -e .
To use this server with Claude Desktop, add the following configuration to your claude_desktop_config.json
:
{
"mcpServers": {
"human-in-the-loop": {
"command": "uvx",
"args": ["hitl-mcp-server"]
}
}
}
{
"mcpServers": {
"human-in-the-loop": {
"command": "hitl-mcp-server",
"args": []
}
}
}
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Linux:
~/.config/Claude/claude_desktop_config.json
Note: You may need to allow Python to control your computer in System Preferences > Security & Privacy > Accessibility for the GUI dialogs to work properly.
After updating the configuration, restart Claude Desktop for the changes to take effect.
Get single-line text, numbers, or other data from users.
Parameters:
title
(str): Dialog window titleprompt
(str): Question/prompt textdefault_value
(str): Pre-filled value (optional)input_type
(str): "text", "integer", or "float" (default: "text")
Example Usage:
result = await get_user_input(
title="Project Setup",
prompt="Enter your project name:",
default_value="my-project",
input_type="text"
)
Present multiple options for user selection.
Parameters:
title
(str): Dialog window titleprompt
(str): Question/prompt textchoices
(List[str]): Available optionsallow_multiple
(bool): Allow multiple selections (default: false)
Example Usage:
result = await get_user_choice(
title="Framework Selection",
prompt="Choose your preferred framework:",
choices=["React", "Vue", "Angular", "Svelte"],
allow_multiple=False
)
Collect longer text content, code, or detailed descriptions.
Parameters:
title
(str): Dialog window titleprompt
(str): Question/prompt textdefault_value
(str): Pre-filled text (optional)
Example Usage:
result = await get_multiline_input(
title="Code Review",
prompt="Please provide your detailed feedback:",
default_value=""
)
Ask for yes/no confirmation before proceeding.
Parameters:
title
(str): Dialog window titlemessage
(str): Confirmation message
Example Usage:
result = await show_confirmation_dialog(
title="Delete Confirmation",
message="Are you sure you want to delete these 5 files? This action cannot be undone."
)
Display information, notifications, or status updates.
Parameters:
title
(str): Dialog window titlemessage
(str): Information message
Example Usage:
result = await show_info_message(
title="Process Complete",
message="Successfully processed 1,247 records in 2.3 seconds!"
)
Check server status and GUI availability.
Example Usage:
status = await health_check()
# Returns detailed platform and functionality information
All tools return structured JSON responses:
{
"success": true,
"user_input": "User's response text",
"cancelled": false,
"platform": "windows",
"input_type": "text"
}
Common Response Fields:
success
(bool): Whether the operation completed successfullycancelled
(bool): Whether the user cancelled the dialogplatform
(str): Operating system platformerror
(str): Error message if operation failed
Tool-Specific Fields:
- get_user_input:
user_input
,input_type
- get_user_choice:
selected_choice
,selected_choices
,allow_multiple
- get_multiline_input:
user_input
,character_count
,line_count
- show_confirmation_dialog:
confirmed
,response
- show_info_message:
acknowledged
- Ambiguous Requirements - When user instructions are unclear
- Decision Points - When you need user preference between valid alternatives
- Creative Input - For subjective choices like design or content style
- Sensitive Operations - Before executing potentially destructive actions
- Missing Information - When you need specific details not provided
- Quality Feedback - To get user validation on intermediate results
# Get target directory
location = await get_user_input(
title="Backup Location",
prompt="Enter backup directory path:",
default_value="~/backups"
)
# Choose backup type
backup_type = await get_user_choice(
title="Backup Options",
prompt="Select backup type:",
choices=["Full Backup", "Incremental", "Differential"]
)
# Confirm before proceeding
confirmed = await show_confirmation_dialog(
title="Confirm Backup",
message=f"Create {backup_type['selected_choice']} backup to {location['user_input']}?"
)
if confirmed['confirmed']:
# Perform backup
await show_info_message("Success", "Backup completed successfully!")
# Get content requirements
requirements = await get_multiline_input(
title="Content Requirements",
prompt="Describe your content requirements in detail:"
)
# Choose tone and style
tone = await get_user_choice(
title="Content Style",
prompt="Select desired tone:",
choices=["Professional", "Casual", "Friendly", "Technical"]
)
# Generate and show results
# ... content generation logic ...
await show_info_message("Content Ready", "Your content has been generated successfully!")
GUI Not Appearing
- Verify you're running in a desktop environment (not headless server)
- Check if tkinter is installed:
python -c "import tkinter"
- Run health check:
health_check()
tool to diagnose issues
Permission Errors (macOS)
- Grant accessibility permissions in System Preferences > Security & Privacy > Accessibility
- Allow Python to control your computer
- Restart terminal after granting permissions
Import Errors
- Ensure package is installed:
pip install hitl-mcp-server
- Check Python version compatibility (>=3.8 required)
- Verify virtual environment activation if using one
Claude Desktop Integration Issues
- Check configuration file syntax and location
- Restart Claude Desktop after configuration changes
- Verify uvx is installed:
pip install uvx
- Test server manually:
uvx hitl-mcp-server
Dialog Timeout
- Default timeout is 5 minutes (300 seconds)
- Dialogs will return with cancelled=true if user doesn't respond
- Ensure user is present when dialogs are triggered
Enable detailed logging by running the server with environment variable:
HITL_DEBUG=1 uvx hitl-mcp-server
Human-In-the-Loop-MCP-Server/
βββ human_loop_server.py # Main server implementation
βββ pyproject.toml # Package configuration
βββ README.md # Documentation
βββ LICENSE # MIT License
βββ .gitignore # Git ignore rules
βββ demo.gif # Demo animation
- Fork the repository
- Create a feature branch:
git checkout -b feature-name
- Make your changes with proper testing
- Follow code style guidelines (Black, Ruff)
- Add type hints and docstrings
- Submit a pull request with detailed description
- Formatting: Black (line length: 88)
- Linting: Ruff with comprehensive rule set
- Type Checking: MyPy with strict configuration
- Testing: Pytest for unit and integration tests
- Windows 10/11 with modern UI styling
- Enhanced visual design with hover effects
- Segoe UI and Consolas font integration
- Full keyboard navigation support
- Native macOS experience
- SF Pro Display system fonts
- Proper window management and focus
- Accessibility permission handling
- Ubuntu/Debian compatible
- Modern styling with system fonts
- Cross-distribution GUI support
- Minimal dependency requirements
This project is licensed under the MIT License - see the LICENSE file for details.
- Built with FastMCP framework
- Uses Pydantic for data validation
- Cross-platform GUI powered by tkinter
- Inspired by the need for human-AI collaboration
- PyPI Package: https://pypi.org/project/hitl-mcp-server/
- Repository: https://github.com/GongRzhe/Human-In-the-Loop-MCP-Server
- Issues: Report bugs or request features
- MCP Protocol: Learn about Model Context Protocol
- Cross-Platform: Windows, macOS, Linux
- Python Support: 3.8, 3.9, 3.10, 3.11, 3.12+
- GUI Framework: tkinter (built-in with Python)
- Thread Safety: Full concurrent operation support
- Response Time: < 100ms dialog initialization
- Memory Usage: < 50MB typical operation
Made with β€οΈ for the AI community - Bridging humans and AI through intuitive interaction