在 Vertex AI Pipelines 中,機器學習管道的結構是使用輸入/輸出依附元件相互連結的容器化管道工作,以有向無環圖 (DAG) 的形式呈現。每個管道工作都是管道元件的例項化,並具有特定輸入內容。定義機器學習管道時,您可以將一個管道工作的輸出內容,路由至機器學習工作流程中下一個管道工作的輸入內容,藉此連結多個管道工作,形成 DAG。您也可以將 ML 管道的原始輸入內容,用做特定管道工作的輸入內容。
使用 Google Cloud Pipeline Components SDK 的 BigQuery ML 元件,在 Vertex AI Pipelines 中組合機器學習管道。如要開始使用 BigQuery ML 元件,請參閱下列 Notebook:
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-06-12 (世界標準時間)。"],[[["ML pipelines represent MLOps workflows, breaking them down into standardized, reusable tasks to automate and monitor processes for training and deploying models."],["Vertex AI Pipelines allows you to create portable and extensible ML pipelines, using a directed acyclic graph (DAG) of containerized tasks with input-output dependencies."],["GoogleSQL queries enable the creation of SQL-based ML pipelines, including running multi-statement queries in sequence to automate tasks like creating or dropping tables, as well as implementing complex logic."],["Dataform can be utilized to develop, test, version control, and schedule complex SQL workflows for data transformation in BigQuery, particularly useful for ML pipelines requiring version control."],["For ML pipelines that involve using the `ML.GENERATE_TEXT` function, both GoogleSQL and Dataform offer ways to handle quota errors by iteratively calling the function, enabling the ability to retry if necessary."]]],[]]