Change patternsel (LIKE/regex selectivity estimation) so that if there
authorTom Lane
Wed, 20 Sep 2006 19:50:21 +0000 (19:50 +0000)
committerTom Lane
Wed, 20 Sep 2006 19:50:21 +0000 (19:50 +0000)
is a large enough histogram, it will use the number of matches in the
histogram to derive a selectivity estimate, rather than the admittedly
pretty bogus heuristics involving examining the pattern contents.  I set
'large enough' at 100, but perhaps we should change that later.  Also
apply the same technique in contrib/ltree's <@ and @> estimator.  Per
discussion with Stefan Kaltenbrunner and Matteo Beccati.

contrib/ltree/ltree_op.c
src/backend/utils/adt/selfuncs.c
src/include/utils/selfuncs.h

index 86178d0a9e20b00633261499651c50ced6c45e2b..f4348e0161fe01472e39eaba8c720f84345a7875 100644 (file)
@@ -1,13 +1,14 @@
 /*
  * op function for ltree
  * Teodor Sigaev 
- * $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.12 2006/05/30 22:12:13 tgl Exp $
+ * $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.13 2006/09/20 19:50:21 tgl Exp $
  */
 
 #include "ltree.h"
 
 #include 
 
+#include "catalog/pg_statistic.h"
 #include "utils/lsyscache.h"
 #include "utils/selfuncs.h"
 #include "utils/syscache.h"
@@ -606,6 +607,7 @@ ltreeparentsel(PG_FUNCTION_ARGS)
        FmgrInfo    contproc;
        double      mcvsum;
        double      mcvsel;
+       double      nullfrac;
 
        fmgr_info(get_opcode(operator), &contproc);
 
@@ -616,10 +618,40 @@ ltreeparentsel(PG_FUNCTION_ARGS)
                                 &mcvsum);
 
        /*
-        * We have the exact selectivity for values appearing in the MCV list;
-        * use the default selectivity for the rest of the population.
+        * If the histogram is large enough, see what fraction of it the
+        * constant is "<@" to, and assume that's representative of the
+        * non-MCV population.  Otherwise use the default selectivity for
+        * the non-MCV population.
         */
-       selec = mcvsel + DEFAULT_PARENT_SEL * (1.0 - mcvsum);
+       selec = histogram_selectivity(&vardata, &contproc,
+                                     constval, varonleft,
+                                     100, 1);
+       if (selec < 0)
+       {
+           /* Nope, fall back on default */
+           selec = DEFAULT_PARENT_SEL;
+       }
+       else
+       {
+           /* Yes, but don't believe extremely small or large estimates. */
+           if (selec < 0.0001)
+               selec = 0.0001;
+           else if (selec > 0.9999)
+               selec = 0.9999;
+       }
+
+       if (HeapTupleIsValid(vardata.statsTuple))
+           nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
+       else
+           nullfrac = 0.0;
+
+       /*
+        * Now merge the results from the MCV and histogram calculations,
+        * realizing that the histogram covers only the non-null values that
+        * are not listed in MCV.
+        */
+       selec *= 1.0 - nullfrac - mcvsum;
+       selec += mcvsel;
    }
    else
        selec = DEFAULT_PARENT_SEL;
index 96d6512ac07e0385994e38c4d27e3f64a2dd5681..44879d20a2854517f622c4d703017ef8e30792b5 100644 (file)
@@ -15,7 +15,7 @@
  *
  *
  * IDENTIFICATION
- *   $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.212 2006/09/19 22:49:53 tgl Exp $
+ *   $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.213 2006/09/20 19:50:21 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
@@ -235,7 +235,7 @@ eqsel(PG_FUNCTION_ARGS)
            {
                /*
                 * Constant is "=" to this common value.  We know selectivity
-                * exactly (or as exactly as VACUUM could calculate it,
+                * exactly (or as exactly as ANALYZE could calculate it,
                 * anyway).
                 */
                selec = numbers[i];
@@ -315,7 +315,7 @@ eqsel(PG_FUNCTION_ARGS)
    else
    {
        /*
-        * No VACUUM ANALYZE stats available, so make a guess using estimated
+        * No ANALYZE stats available, so make a guess using estimated
         * number of distinct values and assuming they are equally common.
         * (The guess is unlikely to be very good, but we do know a few
         * special cases.)
@@ -446,7 +446,7 @@ scalarineqsel(PlannerInfo *root, Oid operator, bool isgt,
 }
 
 /*
- * mcv_selectivity             - Examine the MCV list for scalarineqsel
+ * mcv_selectivity         - Examine the MCV list for selectivity estimates
  *
  * Determine the fraction of the variable's MCV population that satisfies
  * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.  Also
@@ -500,6 +500,80 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
    return mcv_selec;
 }
 
+/*
+ * histogram_selectivity   - Examine the histogram for selectivity estimates
+ *
+ * Determine the fraction of the variable's histogram entries that satisfy
+ * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
+ *
+ * This code will work for any boolean-returning predicate operator, whether
+ * or not it has anything to do with the histogram sort operator.  We are
+ * essentially using the histogram just as a representative sample.  However,
+ * small histograms are unlikely to be all that representative, so the caller
+ * should specify a minimum histogram size to use, and fall back on some
+ * other approach if this routine fails.
+ *
+ * The caller also specifies n_skip, which causes us to ignore the first and
+ * last n_skip histogram elements, on the grounds that they are outliers and
+ * hence not very representative.  If in doubt, min_hist_size = 100 and
+ * n_skip = 1 are reasonable values.
+ *
+ * The function result is the selectivity, or -1 if there is no histogram
+ * or it's smaller than min_hist_size.
+ *
+ * Note that the result disregards both the most-common-values (if any) and
+ * null entries.  The caller is expected to combine this result with
+ * statistics for those portions of the column population.  It may also be
+ * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
+ */
+double
+histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
+                     Datum constval, bool varonleft,
+                     int min_hist_size, int n_skip)
+{
+   double      result;
+   Datum      *values;
+   int         nvalues;
+
+   /* check sanity of parameters */
+   Assert(n_skip >= 0);
+   Assert(min_hist_size > 2 * n_skip);
+
+   if (HeapTupleIsValid(vardata->statsTuple) &&
+       get_attstatsslot(vardata->statsTuple,
+                        vardata->atttype, vardata->atttypmod,
+                        STATISTIC_KIND_HISTOGRAM, InvalidOid,
+                        &values, &nvalues,
+                        NULL, NULL))
+   {
+       if (nvalues >= min_hist_size)
+       {
+           int         nmatch = 0;
+           int         i;
+
+           for (i = n_skip; i < nvalues - n_skip; i++)
+           {
+               if (varonleft ?
+                   DatumGetBool(FunctionCall2(opproc,
+                                              values[i],
+                                              constval)) :
+                   DatumGetBool(FunctionCall2(opproc,
+                                              constval,
+                                              values[i])))
+                   nmatch++;
+           }
+           result = ((double) nmatch) / ((double) (nvalues - 2 * n_skip));
+       }
+       else
+           result = -1;
+       free_attstatsslot(vardata->atttype, values, nvalues, NULL, 0);
+   }
+   else
+       result = -1;
+
+   return result;
+}
+
 /*
  * ineq_histogram_selectivity  - Examine the histogram for scalarineqsel
  *
@@ -521,12 +595,11 @@ ineq_histogram_selectivity(VariableStatData *vardata,
    double      hist_selec;
    Datum      *values;
    int         nvalues;
-   int         i;
 
    hist_selec = 0.0;
 
    /*
-    * Someday, VACUUM might store more than one histogram per rel/att,
+    * Someday, ANALYZE might store more than one histogram per rel/att,
     * corresponding to more than one possible sort ordering defined for the
     * column type.  However, to make that work we will need to figure out
     * which staop to search for --- it's not necessarily the one we have at
@@ -544,105 +617,107 @@ ineq_histogram_selectivity(VariableStatData *vardata,
    {
        if (nvalues > 1)
        {
-           double      histfrac;
-           bool        ltcmp;
-
-           ltcmp = DatumGetBool(FunctionCall2(opproc,
-                                              values[0],
-                                              constval));
-           if (isgt)
-               ltcmp = !ltcmp;
-           if (!ltcmp)
+           /*
+            * Use binary search to find proper location, ie, the first
+            * slot at which the comparison fails.  (If the given operator
+            * isn't actually sort-compatible with the histogram, you'll
+            * get garbage results ... but probably not any more garbage-y
+            * than you would from the old linear search.)
+            */
+           double  histfrac;
+           int     lobound = 0;        /* first possible slot to search */
+           int     hibound = nvalues;  /* last+1 slot to search */
+
+           while (lobound < hibound)
+           {
+               int     probe = (lobound + hibound) / 2;
+               bool    ltcmp;
+
+               ltcmp = DatumGetBool(FunctionCall2(opproc,
+                                                  values[probe],
+                                                  constval));
+               if (isgt)
+                   ltcmp = !ltcmp;
+               if (ltcmp)
+                   lobound = probe + 1;
+               else
+                   hibound = probe;
+           }
+
+           if (lobound <= 0)
            {
                /* Constant is below lower histogram boundary. */
                histfrac = 0.0;
            }
+           else if (lobound >= nvalues)
+           {
+               /* Constant is above upper histogram boundary. */
+               histfrac = 1.0;
+           }
            else
            {
+               int         i = lobound;
+               double      val,
+                           high,
+                           low;
+               double      binfrac;
+
                /*
-                * Scan to find proper location.  This could be made faster by
-                * using a binary-search method, but it's probably not worth
-                * the trouble for typical histogram sizes.
+                * We have values[i-1] < constant < values[i].
+                *
+                * Convert the constant and the two nearest bin boundary
+                * values to a uniform comparison scale, and do a linear
+                * interpolation within this bin.
                 */
-               for (i = 1; i < nvalues; i++)
-               {
-                   ltcmp = DatumGetBool(FunctionCall2(opproc,
-                                                      values[i],
-                                                      constval));
-                   if (isgt)
-                       ltcmp = !ltcmp;
-                   if (!ltcmp)
-                       break;
-               }
-               if (i >= nvalues)
-               {
-                   /* Constant is above upper histogram boundary. */
-                   histfrac = 1.0;
-               }
-               else
+               if (convert_to_scalar(constval, consttype, &val,
+                                     values[i - 1], values[i],
+                                     vardata->vartype,
+                                     &low, &high))
                {
-                   double      val,
-                               high,
-                               low;
-                   double      binfrac;
-
-                   /*
-                    * We have values[i-1] < constant < values[i].
-                    *
-                    * Convert the constant and the two nearest bin boundary
-                    * values to a uniform comparison scale, and do a linear
-                    * interpolation within this bin.
-                    */
-                   if (convert_to_scalar(constval, consttype, &val,
-                                         values[i - 1], values[i],
-                                         vardata->vartype,
-                                         &low, &high))
+                   if (high <= low)
                    {
-                       if (high <= low)
-                       {
-                           /* cope if bin boundaries appear identical */
-                           binfrac = 0.5;
-                       }
-                       else if (val <= low)
-                           binfrac = 0.0;
-                       else if (val >= high)
-                           binfrac = 1.0;
-                       else
-                       {
-                           binfrac = (val - low) / (high - low);
-
-                           /*
-                            * Watch out for the possibility that we got a NaN
-                            * or Infinity from the division.  This can happen
-                            * despite the previous checks, if for example
-                            * "low" is -Infinity.
-                            */
-                           if (isnan(binfrac) ||
-                               binfrac < 0.0 || binfrac > 1.0)
-                               binfrac = 0.5;
-                       }
+                       /* cope if bin boundaries appear identical */
+                       binfrac = 0.5;
                    }
+                   else if (val <= low)
+                       binfrac = 0.0;
+                   else if (val >= high)
+                       binfrac = 1.0;
                    else
                    {
+                       binfrac = (val - low) / (high - low);
+
                        /*
-                        * Ideally we'd produce an error here, on the grounds
-                        * that the given operator shouldn't have scalarXXsel
-                        * registered as its selectivity func unless we can
-                        * deal with its operand types.  But currently, all
-                        * manner of stuff is invoking scalarXXsel, so give a
-                        * default estimate until that can be fixed.
+                        * Watch out for the possibility that we got a NaN
+                        * or Infinity from the division.  This can happen
+                        * despite the previous checks, if for example
+                        * "low" is -Infinity.
                         */
-                       binfrac = 0.5;
+                       if (isnan(binfrac) ||
+                           binfrac < 0.0 || binfrac > 1.0)
+                           binfrac = 0.5;
                    }
-
+               }
+               else
+               {
                    /*
-                    * Now, compute the overall selectivity across the values
-                    * represented by the histogram.  We have i-1 full bins
-                    * and binfrac partial bin below the constant.
+                    * Ideally we'd produce an error here, on the grounds
+                    * that the given operator shouldn't have scalarXXsel
+                    * registered as its selectivity func unless we can
+                    * deal with its operand types.  But currently, all
+                    * manner of stuff is invoking scalarXXsel, so give a
+                    * default estimate until that can be fixed.
                     */
-                   histfrac = (double) (i - 1) + binfrac;
-                   histfrac /= (double) (nvalues - 1);
+                   binfrac = 0.5;
                }
+
+               /*
+                * Now, compute the overall selectivity across the values
+                * represented by the histogram.  We have i-1 full bins
+                * and binfrac partial bin below the constant.
+                */
+               histfrac = (double) (i - 1) + binfrac;
+               histfrac /= (double) (nvalues - 1);
            }
 
            /*
@@ -970,35 +1045,50 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype)
    else
    {
        /*
-        * Not exact-match pattern.  We estimate selectivity of the fixed
-        * prefix and remainder of pattern separately, then combine the two
-        * to get an estimate of the selectivity for the part of the column
-        * population represented by the histogram.  We then add up data for
-        * any most-common-values values; these are not in the histogram
-        * population, and we can get exact answers for them by applying
-        * the pattern operator, so there's no reason to approximate.
-        * (If the MCVs cover a significant part of the total population,
-        * this gives us a big leg up in accuracy.)
+        * Not exact-match pattern.  If we have a sufficiently large
+        * histogram, estimate selectivity for the histogram part of the
+        * population by counting matches in the histogram.  If not, estimate
+        * selectivity of the fixed prefix and remainder of pattern
+        * separately, then combine the two to get an estimate of the
+        * selectivity for the part of the column population represented by
+        * the histogram.  We then add up data for any most-common-values
+        * values; these are not in the histogram population, and we can get
+        * exact answers for them by applying the pattern operator, so there's
+        * no reason to approximate.  (If the MCVs cover a significant part of
+        * the total population, this gives us a big leg up in accuracy.)
         */
-       Selectivity prefixsel;
-       Selectivity restsel;
        Selectivity selec;
        FmgrInfo    opproc;
        double      nullfrac,
                    mcv_selec,
                    sumcommon;
 
-       if (HeapTupleIsValid(vardata.statsTuple))
-           nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
-       else
-           nullfrac = 0.0;
+       /* Try to use the histogram entries to get selectivity */
+       fmgr_info(get_opcode(operator), &opproc);
+
+       selec = histogram_selectivity(&vardata, &opproc, constval, true,
+                                     100, 1);
+       if (selec < 0)
+       {
+           /* Nope, so fake it with the heuristic method */
+           Selectivity prefixsel;
+           Selectivity restsel;
 
-       if (pstatus == Pattern_Prefix_Partial)
-           prefixsel = prefix_selectivity(&vardata, opclass, prefix);
+           if (pstatus == Pattern_Prefix_Partial)
+               prefixsel = prefix_selectivity(&vardata, opclass, prefix);
+           else
+               prefixsel = 1.0;
+           restsel = pattern_selectivity(rest, ptype);
+           selec = prefixsel * restsel;
+       }
        else
-           prefixsel = 1.0;
-       restsel = pattern_selectivity(rest, ptype);
-       selec = prefixsel * restsel;
+       {
+           /* Yes, but don't believe extremely small or large estimates. */
+           if (selec < 0.0001)
+               selec = 0.0001;
+           else if (selec > 0.9999)
+               selec = 0.9999;
+       }
 
        /*
         * If we have most-common-values info, add up the fractions of the MCV
@@ -1006,10 +1096,14 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype)
         * directly to the result selectivity.  Also add up the total fraction
         * represented by MCV entries.
         */
-       fmgr_info(get_opcode(operator), &opproc);
        mcv_selec = mcv_selectivity(&vardata, &opproc, constval, true,
                                    &sumcommon);
 
+       if (HeapTupleIsValid(vardata.statsTuple))
+           nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
+       else
+           nullfrac = 0.0;
+
        /*
         * Now merge the results from the MCV and histogram calculations,
         * realizing that the histogram covers only the non-null values that
@@ -1332,7 +1426,7 @@ nulltestsel(PlannerInfo *root, NullTestType nulltesttype,
    else
    {
        /*
-        * No VACUUM ANALYZE stats available, so make a guess
+        * No ANALYZE stats available, so make a guess
         */
        switch (nulltesttype)
        {
index 065e9a5e22195b1b4f81feffc382939bfefe8e32..aea2501ca397aebe59e14464aa685c10e3e06d50 100644 (file)
@@ -8,7 +8,7 @@
  * Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
- * $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.34 2006/07/01 22:07:23 tgl Exp $
+ * $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.35 2006/09/20 19:50:21 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
@@ -110,6 +110,9 @@ extern double get_variable_numdistinct(VariableStatData *vardata);
 extern double mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
                              Datum constval, bool varonleft,
                              double *sumcommonp);
+extern double histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
+                                   Datum constval, bool varonleft,
+                                   int min_hist_size, int n_skip);
 
 extern Pattern_Prefix_Status pattern_fixed_prefix(Const *patt,
                     Pattern_Type ptype,