Fix eqjoinsel() to make use of new statistics.
authorTom Lane
Sun, 27 May 2001 17:37:48 +0000 (17:37 +0000)
committerTom Lane
Sun, 27 May 2001 17:37:48 +0000 (17:37 +0000)
src/backend/utils/adt/selfuncs.c

index 07c4da115f59c6eec63cee3874194fdb3401c337..1c9b3c60b9d70b7fa28fe51e309fb1e90b2be0f6 100644 (file)
@@ -15,7 +15,7 @@
  *
  *
  * IDENTIFICATION
- *   $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.90 2001/05/20 20:28:19 tgl Exp $
+ *   $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.91 2001/05/27 17:37:48 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
@@ -940,9 +940,7 @@ Datum
 eqjoinsel(PG_FUNCTION_ARGS)
 {
    Query      *root = (Query *) PG_GETARG_POINTER(0);
-#ifdef NOT_USED                    /* see neqjoinsel() before removing me! */
    Oid         operator = PG_GETARG_OID(1);
-#endif
    List       *args = (List *) PG_GETARG_POINTER(2);
    Var        *var1;
    Var        *var2;
@@ -958,73 +956,219 @@ eqjoinsel(PG_FUNCTION_ARGS)
        HeapTuple   statsTuple2 = NULL;
        Form_pg_statistic stats1 = NULL;
        Form_pg_statistic stats2 = NULL;
-       double      nd1,
-                   nd2;
-
-       if (var1 == NULL)
-       {
-           nd1 = DEFAULT_NUM_DISTINCT;
-       }
-       else
+       double      nd1 = DEFAULT_NUM_DISTINCT;
+       double      nd2 = DEFAULT_NUM_DISTINCT;
+       bool        have_mcvs1 = false;
+       Datum      *values1 = NULL;
+       int         nvalues1 = 0;
+       float4     *numbers1 = NULL;
+       int         nnumbers1 = 0;
+       bool        have_mcvs2 = false;
+       Datum      *values2 = NULL;
+       int         nvalues2 = 0;
+       float4     *numbers2 = NULL;
+       int         nnumbers2 = 0;
+
+       if (var1 != NULL)
        {
            /* get stats for the attribute, if available */
            Oid     relid1 = getrelid(var1->varno, root->rtable);
 
-           if (relid1 == InvalidOid)
-               nd1 = DEFAULT_NUM_DISTINCT;
-           else
+           if (relid1 != InvalidOid)
            {
                statsTuple1 = SearchSysCache(STATRELATT,
                                             ObjectIdGetDatum(relid1),
                                             Int16GetDatum(var1->varattno),
                                             0, 0);
                if (HeapTupleIsValid(statsTuple1))
+               {
                    stats1 = (Form_pg_statistic) GETSTRUCT(statsTuple1);
+                   have_mcvs1 = get_attstatsslot(statsTuple1,
+                                                 var1->vartype,
+                                                 var1->vartypmod,
+                                                 STATISTIC_KIND_MCV,
+                                                 InvalidOid,
+                                                 &values1, &nvalues1,
+                                                 &numbers1, &nnumbers1);
+               }
 
                nd1 = get_att_numdistinct(root, var1, stats1);
            }
        }
 
-       if (var2 == NULL)
-       {
-           nd2 = DEFAULT_NUM_DISTINCT;
-       }
-       else
+       if (var2 != NULL)
        {
            /* get stats for the attribute, if available */
            Oid     relid2 = getrelid(var2->varno, root->rtable);
 
-           if (relid2 == InvalidOid)
-               nd2 = DEFAULT_NUM_DISTINCT;
-           else
+           if (relid2 != InvalidOid)
            {
                statsTuple2 = SearchSysCache(STATRELATT,
                                             ObjectIdGetDatum(relid2),
                                             Int16GetDatum(var2->varattno),
                                             0, 0);
                if (HeapTupleIsValid(statsTuple2))
+               {
                    stats2 = (Form_pg_statistic) GETSTRUCT(statsTuple2);
+                   have_mcvs2 = get_attstatsslot(statsTuple2,
+                                                 var2->vartype,
+                                                 var2->vartypmod,
+                                                 STATISTIC_KIND_MCV,
+                                                 InvalidOid,
+                                                 &values2, &nvalues2,
+                                                 &numbers2, &nnumbers2);
+               }
 
                nd2 = get_att_numdistinct(root, var2, stats2);
            }
        }
 
-       /*
-        * Estimate the join selectivity as 1 / sqrt(nd1*nd2)
-        * (can we produce any theory for this)?
-        *
-        * XXX possibility to do better: if both attributes have histograms
-        * then we could determine the exact join selectivity between the
-        * MCV sets, and only have to assume the join behavior of the non-MCV
-        * values.  This could be a big win when the MCVs cover a large part
-        * of the population.
-        *
-        * XXX what about nulls?
-        */
-       selec = 1.0 / sqrt(nd1 * nd2);
-       if (selec > 1.0)
-           selec = 1.0;
+       if (have_mcvs1 && have_mcvs2)
+       {
+           /*
+            * We have most-common-value lists for both relations.  Run
+            * through the lists to see which MCVs actually join to each
+            * other with the given operator.  This allows us to determine
+            * the exact join selectivity for the portion of the relations
+            * represented by the MCV lists.  We still have to estimate for
+            * the remaining population, but in a skewed distribution this
+            * gives us a big leg up in accuracy.  For motivation see the
+            * analysis in Y. Ioannidis and S. Christodoulakis, "On the
+            * propagation of errors in the size of join results", Technical
+            * Report 1018, Computer Science Dept., University of Wisconsin,
+            * Madison, March 1991 (available from ftp.cs.wisc.edu).
+            */
+           FmgrInfo    eqproc;
+           bool       *hasmatch1;
+           bool       *hasmatch2;
+           double      matchprodfreq,
+                       matchfreq1,
+                       matchfreq2,
+                       unmatchfreq1,
+                       unmatchfreq2,
+                       otherfreq1,
+                       otherfreq2,
+                       totalsel1,
+                       totalsel2;
+           int         i,
+                       nmatches;
+
+           fmgr_info(get_opcode(operator), &eqproc);
+           hasmatch1 = (bool *) palloc(nvalues1 * sizeof(bool));
+           memset(hasmatch1, 0, nvalues1 * sizeof(bool));
+           hasmatch2 = (bool *) palloc(nvalues2 * sizeof(bool));
+           memset(hasmatch2, 0, nvalues2 * sizeof(bool));
+           /*
+            * Note we assume that each MCV will match at most one member of
+            * the other MCV list.  If the operator isn't really equality,
+            * there could be multiple matches --- but we don't look for them,
+            * both for speed and because the math wouldn't add up...
+            */
+           matchprodfreq = 0.0;
+           nmatches = 0;
+           for (i = 0; i < nvalues1; i++)
+           {
+               int     j;
 
+               for (j = 0; j < nvalues2; j++)
+               {
+                   if (hasmatch2[j])
+                       continue;
+                   if (DatumGetBool(FunctionCall2(&eqproc,
+                                                  values1[i],
+                                                  values2[j])))
+                   {
+                       hasmatch1[i] = hasmatch2[j] = true;
+                       matchprodfreq += numbers1[i] * numbers2[j];
+                       nmatches++;
+                       break;
+                   }
+               }
+           }
+           /* Sum up frequencies of matched and unmatched MCVs */
+           matchfreq1 = unmatchfreq1 = 0.0;
+           for (i = 0; i < nvalues1; i++)
+           {
+               if (hasmatch1[i])
+                   matchfreq1 += numbers1[i];
+               else
+                   unmatchfreq1 += numbers1[i];
+           }
+           matchfreq2 = unmatchfreq2 = 0.0;
+           for (i = 0; i < nvalues2; i++)
+           {
+               if (hasmatch2[i])
+                   matchfreq2 += numbers2[i];
+               else
+                   unmatchfreq2 += numbers2[i];
+           }
+           pfree(hasmatch1);
+           pfree(hasmatch2);
+           /*
+            * Compute total frequency of non-null values that are not in
+            * the MCV lists.
+            */
+           otherfreq1 = 1.0 - stats1->stanullfrac - matchfreq1 - unmatchfreq1;
+           otherfreq2 = 1.0 - stats2->stanullfrac - matchfreq2 - unmatchfreq2;
+           /*
+            * We can estimate the total selectivity from the point of view
+            * of relation 1 as: the known selectivity for matched MCVs, plus
+            * unmatched MCVs that are assumed to match against random members
+            * of relation 2's non-MCV population, plus non-MCV values that
+            * are assumed to match against random members of relation 2's
+            * unmatched MCVs plus non-MCV values.
+            */
+           totalsel1 = matchprodfreq;
+           if (nd2 > nvalues2)
+               totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - nvalues2);
+           if (nd2 > nmatches)
+               totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
+                   (nd2 - nmatches);
+           /* Same estimate from the point of view of relation 2. */
+           totalsel2 = matchprodfreq;
+           if (nd1 > nvalues1)
+               totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - nvalues1);
+           if (nd1 > nmatches)
+               totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
+                   (nd1 - nmatches);
+           /*
+            * For robustness, we average the two estimates.  (Can a case
+            * be made for taking the min or max instead?)
+            */
+           selec = (totalsel1 + totalsel2) * 0.5;
+       }
+       else
+       {
+           /*
+            * We do not have MCV lists for both sides.  Estimate the
+            * join selectivity as MIN(1/nd1, 1/nd2).  This is plausible
+            * if we assume that the values are about equally distributed:
+            * a given tuple of rel1 will join to either 0 or N2/nd2 rows
+            * of rel2, so total join rows are at most N1*N2/nd2 giving
+            * a join selectivity of not more than 1/nd2.  By the same logic
+            * it is not more than 1/nd1, so MIN(1/nd1, 1/nd2) is an upper
+            * bound.  Using the MIN() means we estimate from the point of
+            * view of the relation with smaller nd (since the larger nd is
+            * determining the MIN).  It is reasonable to assume that most
+            * tuples in this rel will have join partners, so the bound is
+            * probably reasonably tight and should be taken as-is.
+            *
+            * XXX Can we be smarter if we have an MCV list for just one side?
+            * It seems that if we assume equal distribution for the other
+            * side, we end up with the same answer anyway.
+            */
+           if (nd1 > nd2)
+               selec = 1.0 / nd1;
+           else
+               selec = 1.0 / nd2;
+       }
+
+       if (have_mcvs1)
+           free_attstatsslot(var1->vartype, values1, nvalues1,
+                             numbers1, nnumbers1);
+       if (have_mcvs2)
+           free_attstatsslot(var2->vartype, values2, nvalues2,
+                             numbers2, nnumbers2);
        if (HeapTupleIsValid(statsTuple1))
            ReleaseSysCache(statsTuple1);
        if (HeapTupleIsValid(statsTuple2))
@@ -1039,14 +1183,30 @@ eqjoinsel(PG_FUNCTION_ARGS)
 Datum
 neqjoinsel(PG_FUNCTION_ARGS)
 {
+   Query      *root = (Query *) PG_GETARG_POINTER(0);
+   Oid         operator = PG_GETARG_OID(1);
+   List       *args = (List *) PG_GETARG_POINTER(2);
+   Oid         eqop;
    float8      result;
 
    /*
-    * XXX we skip looking up the negator operator here because we know
-    * eqjoinsel() won't look at it anyway.  If eqjoinsel() ever does
-    * look, this routine will need to look more like neqsel() does.
+    * We want 1 - eqjoinsel() where the equality operator is the one
+    * associated with this != operator, that is, its negator.
     */
-   result = DatumGetFloat8(eqjoinsel(fcinfo));
+   eqop = get_negator(operator);
+   if (eqop)
+   {
+       result = DatumGetFloat8(DirectFunctionCall3(eqjoinsel,
+                                            PointerGetDatum(root),
+                                            ObjectIdGetDatum(eqop),
+                                            PointerGetDatum(args)));
+
+   }
+   else
+   {
+       /* Use default selectivity (should we raise an error instead?) */
+       result = DEFAULT_EQ_SEL;
+   }
    result = 1.0 - result;
    PG_RETURN_FLOAT8(result);
 }