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Figure 1: An overview of the methods for sending texture data from the disk to the GPU. Each vertical arrow indicates data sent over a
bandwidth-limited channel. Each horizontal bar represents a decoding procedure. Green circles represent entropy-encoded data used for
storage and streaming. Yellow triangles represent compressed texture data for use with hardware decoders in commodity GPUs. Red boxes
represent the full uncompressed image data. We present a new method (GST) for maintaining a compressed format across all bandwidth-
limited channels that decodes directly into a compressed texture on the GPU. Compared to prior techniques, our approach has the lowest
CPU-GPU bandwidth requirements while maintaining compressed textures in GPU memory. Texture courtesy of Trinket Studios.

Abstract

Modern GPUs supporting compressed textures allow interactive ap-
plication developers to save scarce GPU resources such as VRAM
and bandwidth. Compressed textures use fixed compression ratios
whose lossy representations are significantly poorer quality than
traditional image compression formats such as JPEG. We present a
new method in the class of supercompressed textures that provides
an additional layer of compression to already compressed textures.
Our texture representation is designed for endpoint compressed for-
mats such as DXT and PVRTC and decoding on commodity GPUs.
We apply our algorithm to commonly used formats by separating
their representation into two parts that are processed independently
and then entropy encoded. Our method preserves the CPU-GPU
bandwidth during the decoding phase and exploits the parallelism
of GPUs to provide up to 3X faster decode compared to prior tex-
ture supercompression algorithms. Along with the gains in decod-
ing speed, our method maintains both the compression size and
quality of current state of the art texture representations.
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1 Introduction

For over a decade, commodity graphics hardware has shipped with
dedicated compressed texture decoding units. Classically, these
units decode a fixed number of bits into a block of pixels of prede-
termined dimension to use with the texture sampling pipeline. Stor-
ing compressed textures with respect to these hardware capabilities
reduces the amount of bandwidth needed to transfer a texture into
dedicated video memory, and the compressed representation allows
for significantly more texture data to reside on the GPU.

Hardware texture compression formats map nicely to GPU architec-
tures by allowing random-access to texture data. However, random
access requires the texture to be encoded using fixed compression
rates. In contrast to image compression formats such as PNG and
JPEG [1992], which provide up to 50:1 compression, GPU texture
formats commonly provide lower quality for file sizes at 6:1 com-
pression. As an example, a 4K video frame (19MB uncompressed)
requires 345KB of storage as a JPEG, whereas the same video
frame requires 3.21MB as a pure DXT compressed texture. This
discrepancy is largely due to random access hardware requirements
preventing the use of variable-length encoding techniques that are
used in image compression. The result is that application develop-
ers must choose between optimizing their data for streaming and
optimizing for run-time efficiency, as image compression formats
such as JPEG decode into fully uncompressed textures in memory.
This trade-off becomes even more troublesome for applications that
stream their texture assets over a low-bandwidth channel such as
network-enabled GIS applications (e.g., Google Maps) and video
game streaming services [Pohl et al. 2014]. Additionally, large vir-
tual environments that cannot store all of their rendering data in
memory would significantly benefit from lower disk-to-VRAM la-
tency in order to avoid noticable loading artifacts.

In order to tackle the limitations of fixed-rate compression, re-
cent work has focused on supercompressing the textures [Geldreich
2012; Ström and Wennersten 2011]. In other words, an additional
layer of compression is used in order to encode the already com-
pressed representation in preparation for storage on disk. These
methods typically process the compressed texture representations
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in preparation for an entropy encoding step, such as Huffman or
arithmetic encoding providing an additional 2-3X compression to
regain the advantage of compressed image sizes on disk. However,
decoding the texture on the CPU eschews the main benefits of com-
pressing textures: the gained bandwidth across the CPU-GPU bus.
This bandwidth is even more important in mobile devices that have
power constrained GPUs [Leskela et al. 2009].

In this paper, we present a new supercompression algorithm GST,
pronounced jist, for decompressing textures on the GPU into
hardware-compressed formats. Our three main contributions in-
clude:

1. A new supercompressed texture representation for endpoint-
compressed formats;

2. A method for encoding textures into this format;

3. A parallel decoding algorithm suitable for SIMD architectures
such as GPUs.

The basis of our algorithm is a state-of-the-art entropy encoding
technique known as ANS that allows multiple compression streams
to be interleaved and decoded in parallel on the GPU [Giesen 2014].
We exploit the underlying structure of commonly used endpoint
compression formats in a way that increases the internal redun-
dancy of the texture data, allowing for efficient static context mod-
eling for the entropy encoder. Our approach saves both streaming
and CPU-GPU bandwidth by providing compressed texture data to
be decompressed by the device that will use it. Furthermore, one of
our main benefits is the increased decoding speed realized by using
massively parallel architectures.

We target the class of endpoint compression formats as described
in Section 2.3. We first re-encode the per-pixel palette indices
from a compressed representation into per-block dictionary entries.
To improve redundancy between successive index blocks, we store
the differences in sequential dictionary entries, similar to differen-
tial pulse-code modulation (DPCM). Next, we treat the separate
palette-generating endpoints of each block as two low-resolution
images for which we use a wavelet transform. Finally, both of
these parts are written to disk using entropy encoding. Our current
implementation rivals the state-of-the-art CPU codecs in compres-
sion size and quality with up to 3X improvement in decompression
speed. This translates to about a 2-3X improvement in compres-
sion size over the original hardware-compressed formats, which is
realized as additional gains in CPU-GPU bandwidth when the su-
percompressed texture data is sent to the GPU to be decoded. Our
algorithm is designed from the ground up to target current desktop
and mobile GPU architectures, and we show benefits to loading 4K
video frames and large numbers of textures.

The rest of this paper is organized as follows. Section 2 discusses
prior work and provides context for the dichotomy between image
and texture compression algorithms. Section 3 gives an overview
of our compression pipeline. Section 4 describes details on parallel
encoding while Section 5 discusses implementation details for spe-
cific compressed formats. Results are described in Section 6, and a
discussion of limitations and future work is covered in Section 7.

2 Background

Texture data bandwidth has been a major, well-studied issue for
interactive graphics applications for decades. In the rest of this sec-
tion, we give a brief overview of texture and image compression
techniques.

2.1 Image Compression

Traditional image compression algorithms such as PNG and JPEG
use a variable-rate entropy encoding step to allocate bits to pixels
with respect to their amount of detail. In order to prepare an im-
age for entropy encoding, the raw RGB data usually undergoes one
or more transforms in order to increase the amount of redundancy
in the data. For example, JPEG uses the discrete cosine transform
to condense the information content of blocks of pixels [Wallace
1992], and its successor, JPEG-2000, uses an optionally lossless
wavelet transform [Skodras et al. 2001]. Similarly, colors are usu-
ally transformed into color spaces that collect psychovisual detail
into a single channel in order to increase overall compression effi-
ciency. One such example is the lossless conversion of 8-bit RGB
to a colorspace such as YCoCg [Malvar et al. 2008].

The entropy encoding stage of image compression algorithms is
usually an inherently serial procedure that is difficult to paral-
lelize. Olano et al. [2011] address this problem by proposing a new
variable-rate compression scheme in which a GPU range codec is
used to decompress the images by decoding differences between
mip-levels. The resulting full-resolution textures are stored uncom-
pressed in GPU memory.

2.2 Entropy Encoding

Techniques such as Huffman [1952], arithmetic [1979], and
ANS [2013] encoding are the basis for many image compression
formats [Buccigrossi and Simoncelli 1999]. Although entropy de-
coding algorithms are inherently serial due to their variable length
output, we may use multiple encoders and decoders in parallel.
Duda [2013] presented asymmetric numeral systems (ANS) that
maintains an internal state consistent between the encoder and de-
coder. This property allows multiple encoding streams to be in-
terleaved into a single data stream. Giesen [2014] uses this prop-
erty to demonstrate how to create data streams that can be decoded
in parallel using single-instruction multiple-data (SIMD) architec-
tures. We give an overview of the range variant of ANS encoding
and its use in our method in Section 3.3.

2.3 Texture Compression

The random access properties of compressed textures imply a fixed-
rate compression ratio regardless of texture detail. This requirement
allows texture mapping hardware to quickly compute an address to
the underlying texture data. Typically, fixed-rate compression for-
mats represent N ×M blocks of pixels in some fixed number of
bits. One of the earliest such representations was introduced by
Delp and Mitchell [1979] to provide a two bit-per-pixel (bpp) lossy
interpretation of eight-bit grayscale images. Later, many graphics
architectures were proposed using similar compressed texture rep-
resentations [Torborg and Kajiya 1996; Knittel et al. 1996; Beers
et al. 1996].

Modern texture compression formats belong to one of two classes.
The first class, known as endpoint compression formats, uses two
low-precision RGB endpoints per block to generate a palette of col-
ors by linear interpolation. Along with these two low-precision col-
ors, a per-pixel palette index is stored to recreate the final pixel
color [Delp and Mitchell 1979; Fenney 2003; OpenGL 2010; Nys-
tad et al. 2012]. Among the first endpoint compressed texture for-
mats available on commodity graphics hardware was DXT, intro-
duced by Iourcha et al. [1999]. In this format, 4× 4 blocks of pix-
els are represented using two 16-bit values and 16 two-bit values.
The two 16-bit values are each interpreted as 565 RGB endpoints
that generate a four-color palette for the block via linear interpo-
lation. The following 16 two-bit values index into this palette to



recreate the final pixel values. Fenney [2003] targeted the worst-
case filtering step of DXT by providing a compression format that
bilinearly interpolates palette data across block boundaries. Later,
the BPTC specification and ASTC introduced many improvements
upon the original DXT format that provide multiple palettes per
block, variable precision palette indices, a variable number of in-
dices per block, and even variable global block sizes [OpenGL
2010; Nystad et al. 2012].

The second class of texture compression formats is known as tabled
compression formats. These formats store a single color per block
of N × M pixels and per-pixel offsets. Ström and Akenine-
Möller [2004; 2005] introduced the first tabled formats as PACK-
MAN and iPACKMAN. Later, Ström and Pettersson [2007] im-
proved upon iPACKMAN by exploiting unused encoded represen-
tations to provide additional detail.

Although most texture hardware requires random-access to the
pixel data, many architectures have been proposed to alleviate this
constraint. Inada and McCool [2006] proposed texturing hardware
that stores textures in a b-tree to allow for efficient pixel access.
Similarly, Krajcevski et al. [2016] presented a scheme that provides
variable bit-rate texture compression by adding a layer of indirec-
tion to dynamically select ASTC block sizes for regions of an im-
age.

2.4 Supercompressed Textures

In order to reduce the streaming latency of textures, most appli-
cations store these compressed texture formats (e.g., DXT, ASTC,
ETC) on disk without additional processing. Recently, however,
there has been progress into targeting both on-disk compression
and in-memory compression. Ström and Wennersten [2011] pro-
posed a scheme for further compressing ETC2 textures. In their
formulation, they predict the final pixel colors in order to predict
the per-pixel indices for the given block. They observe a gain of
up to 3X in some cases over existing ETC2 textures. A differ-
ent approach, known as Crunch, developed by Geldreich [2012],
uses a Huffman-encoded dictionary of endpoints and index blocks
to further compress a DXT-encoded texture. Blocks are stored in
order using the differences between successive dictionary entries.
Both of these methods decode the compressed texture on the CPU
before sending them to the GPU. In this paper, we present an ap-
proach for supercompression that preserves bandwidth using GPU
decompression similar to Olano et al. [2011], while maintaining the
decompression benefits of DXT.

3 Compression Pipeline

In this section we present our encoding scheme and discuss the
techniques used to prepare our data for entropy encoding. Our su-
percompression algorithm is designed to be compatible with many
widely used texture formats and to map well to current GPU archi-
tectures. Our approach is based on fulfilling the following design
goals:

• The supercompressed texture representation should be di-
rectly decodable on SIMD architectures, such as GPUs, with-
out additional processing.

• The final decoded result should be a compressed texture in
GPU memory.

• The supercompressed texture representation should be agnos-
tic to the underlying endpoint compression formats.

Given an endpoint compressed texture representation, our compres-
sion pipeline is organized in three stages, one for each of the con-
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Figure 2: The constituent parts of a compressed texture. Each
endpoint compressed texture represents a sequence of equally sized
blocks. Each block contains a fixed number of bits containing two
endpoint colors that generate a palette and per-pixel index data.
Here we show the endpoints separated into individual images and
visualize the per-pixel indices. We re-encode the indices using VQ-
style dictionary compression and transform the endpoint images us-
ing a wavelet transform prior to encoding the final texture using an
entropy encoder.

stituent parts of a compressed texture as described in Figure 2, and
one for the final entropy encoding. Only the first stage introduces
a minimal amount of error while the last two stages are lossless. In
the first stage, starting with the original texture, we generate an ini-
tial target endpoint compressed representation. We then re-encode
each compressed block in an attempt to reuse indices from succes-
sive blocks of pixels in preparation for dictionary encoding similar
to vector quantization (VQ). In doing so, we also generate a new set
of endpoints per-block. In the second stage, we independently pro-
cess these endpoints as separate low-resolution images in prepara-
tion for entropy encoding. Finally, we combine similar data streams
and encode each using the range variant of ANS before storing to
disk [Duda 2013]. The final output of our compression pipeline is
four ANS streams to be decoded as described in Section 4.

3.1 Index Block Dictionary Generation

The per-pixel palette indices are classically the most difficult piece
of information to compress [Ström and Wennersten 2011][Waveren
2006]. The first step in our compression pipeline is a re-encoding
stage as described in Figure 3. The purpose of this step is to recom-
pute palette indices for blocks of pixels in a way that is conducive
to dictionary construction, similar to VQ. The endpoints for each
block are then optimized to fit these newly assigned indices. Our
goal is to build a dictionary of index blocks representing N ×M
blocks of indices. As an example, a 4× 4 block of pixels that uses
two-bit palette indices will have a dictionary of thirty-two bit index
blocks. The goal of the dictionary is to have many redundancies in
order to map well to the final entropy encoding step of pipeline as
described in Section 3.3.

We begin by using an existing codec such as DXT or PVRTC as a
black box for providing the original compressed representation of
a given texture. This codec is assumed to process each N × M
block of pixels to produce two RGB endpoints defining a palette,
and N ×M per-pixel palette indices as described in Section 2.3.
We define an error threshold E that determines the amount of addi-
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Figure 3: The first stage of our encoding pipeline. We process
each block in raster-scan order while maintaining a dictionary of
recently added index blocks. For each index block, if we find an
existing index block in the dictionary that closely matches the orig-
inal, we reuse that index block. If significant error is introduced,
then we add this index block to the dictionary.

tional mean-squared error that can be introduced for a given block.
Comparing against the original compressed representation, we pro-
ceed by searching for recently added index blocks to the dictionary.
If no such dictionary entry is found, then we add the index block
corresponding to the original indices for that block to the dictionary.
The amount of overall error introduced in the compressed represen-
tation is directly related to the choice of E . This error threshold is a
simple way to affect the rate versus distortion properties of our com-
pression method. By choosing a higher value for E , we get more
redundancy in our dictionary, as more recently used index blocks
become acceptable, but introduce additional error resulting in more
noticeable compression artifacts.

Similarly to VQ, we replace each index block in the texture with a
dictionary entry. In order to decrease the number of bits required to
store the entries, we only consider the last k dictionary entries. This
allows us to represent a given block’s dictionary entry as a delta in
the range [−k, k] from the previous block’s entry. The entries can
then be reconstructed performing a prefix-sum. By increasing the
size of k, we have a smaller dictionary to store but suffer from the
increased size of each dictionary entry. Although we process blocks
in raster-scan order, different images may provide better delta com-
pression using different orderings, such as a Z-curve. In our ex-
periments, the compression performance of each ordering is highly
dependent on the texture, and can be specified in a small per-file
header. In our implementation, however, we choose raster-scan or-
der and k = 127 in order to represent each entry delta using one
byte.

In order to determine the amount of error introduced by deviat-
ing from the optimal index block, we use an optimization tech-
nique for the endpoints found in many existing endpoint texture en-
coders [Fenney 2003; Brown 2006; Castaño 2007; Krajcevski et al.
2013]. For endpoint-based texture compression each reconstructed
pixel comes from a palette generated by two endpoints pA and pB .
The number of palette entries pi is determined by the number of
bits b allotted to each pixel index in an index block,

pi =
(2b − 1− i)pA + ipB

2b − 1
,

with i ∈ [0, 2b − 1]. Using this formulation, for a given index
block we can construct a NM × 2 matrix B such that the optimal
endpoints pA and pB are found by minimizing the least-squares

error of the equation ∥∥∥∥B [pA

pB

]
− [px]

∥∥∥∥ ,
where each px corresponds to the RGB value of the x-th pixel in
the original block.

3.2 Endpoint Processing

The second stage of our compression pipeline handles the endpoints
themselves. Once the index block dictionary is generated, each
block in the texture contains two RGB endpoints that define the
palette for that block. Similarly to the PVRTC algorithm, we con-
sider these endpoints independently as two separate low-resolution
images that approximate the final image [Fenney 2003]. Each of
these images can be treated independently as a separate image us-
ing traditional compression techniques.

Our endpoint encoding step processes the images in two steps prior
to entropy encoding, similar to JPEG2000 [Skodras et al. 2001].
The first step is a decorrelation step in order to improve the redun-
dancy of neighboring values and to collect the visual information
into a single channel. We chose the lossless YCoCg transform in
order to avoid additional loss in the final texture and for its simplic-
ity of implementation [Malvar et al. 2008]. The lossless property
of this color transform is important because any additional error is
magnified by the block dimensions in the final reconstructed im-
age. The second step applies a wavelet transform to each color
plane after the YCoCg transform. This step alters the total distri-
bution of values in order to skew their probability distribution in
preparation for entropy encoding. In our experiments, the choice
of wavelet basis does not significantly affect the resulting compres-
sion size. However, in order to preserve lossless compression of
the endpoints, we use the CDF 5/3 wavelet as in JPEG2000 [Cohen
et al. 1992].

3.3 ANS Entropy Encoding

The final stage of our compression pipeline combines the output of
the two previous stages into a single data stream. Each previous
stage produces two symbol streams with different probability dis-
tributions requiring a separate context model for each. The index
block dictionary and entries comprise the two streams from the first
stage, and the second two are the separate Y and CoCg streams for
the combined endpoints (Figure 4). Each of the four streams are en-
tropy encoded separately and the results are concatenated and saved
on disk along with the associated probability distributions. In the
rest of this subsection we describe the entropy encoding technique
used, known as Asymmetric Numeral Systems (ANS), first intro-
duced by Duda [2013].

3.3.1 Background

Entropy encoding is a general term used for any method that con-
verts a sequence of values, or symbols, chosen from an alphabet,
into a sequence of bits based solely on the probability of each value
appearing in the input stream. The earliest such method, known as
Huffman coding, directly assigns a pattern of bits to each possible
input symbol [Huffman 1952]. The length of each bit pattern cor-
responds to the probability of that symbol appearing in the input
stream. Compression occurs when the probability of a few symbols
is far larger than the probability of others.

In Huffman encoding, since each symbol is represented by b ∈ Z
bits, the corresponding probability of seeing the symbol in the in-
put stream becomes 1

2b
. As a result, we are not able to represent



non-power-of-two probability distributions (or models) of symbols
used with the input sequence. To rectify this limitation, a tech-
nique known as arithmetic coding takes a different approach [Ris-
sanen and Langdon 1979]. Both encoder and decoder take as in-
put an alphabet of symbols A = {0, ..., n − 1} with probabilities
p0, ..., pn−1 such that 1 =

∑n−1
s=0 ps. The encoder maintains two

values, or states, L and H , that describe the range of numbers that
encode all previously seen symbols. Initializing L = 0 and H = 1,
for each symbol s received as input, the encoder alters the states by
the following formula:

Lnew = L+ (H − L)

s−1∑
i=0

pi

Hnew = Lnew + ps (H − L)

The final result written to disk can be any number in the range
[L,H). This number uniquely determines the input sequence for
the given probability distribution of symbols in A. Compression
occurs when the numbers L and H are relatively far apart, and we
can choose a number that requires few bits to represent within that
range. In particular, we can see that for a sequence of symbols
s0, s1, ..., the range H − L gets smaller at the rate of ps0ps1 ....
This implies that the number of bits needed to represent a number
in this range grows at the rate O(log 1

pi
), which matches the opti-

mal theoretical limit established by Shannon [1948]. By knowing
the final result, the decoder can follow the same procedure as the
encoder and stop upon reaching the end of the bit stream.

3.3.2 Asymmetric Numeral Systems

ANS is similar to arithmetic encoding in that it approximates
the theoretical limit to compression size, but has certain proper-
ties that make it amenable for implementation on SIMD archi-
tectures. The input to the compression algorithm is an alphabet
A = {0, ..., n− 1}, a stream of input symbols s ∈ A, and a prob-
ability distribution {ps},

∑
s ps = 1. Commonly, this probability

distribution is discretized with the approximation F : A → N such
that F (s)/M ≈ ps, where M =

∑
s F (s). We use the common

approach of using the notation Fs to represent Fs = F (s). Given
a symbol s and a state x ∈ N that encodes all of the previously
seen symbols of a given stream, ANS provides an encoder C and a
decoder D such that

C(s, x) = x′ = M

⌊
x

Fs

⌋
+Bs + (x mod Fs)

D(x′) = (s, x) =

(
L(R), Fs

⌊
x′

M

⌋
+R−Bs

)
,

where

R = x′ mod M and Bs =

s−1∑
i=0

Fi.

The function L is a lookup function that determines the symbol s
such that

L(z) = max
Bs<z

s.

It follows that C and D are direct inverses of each other, a property
that arithmetic coding does not satisfy. Furthermore, C and D are
monotonically increasing and decreasing with respect to the state x,
respectively. The more interesting property is that our state grows at
a rate similar to that of arithmetic encoding, requiring O(log M

Fs
) ≈

O(log 1
ps
) bits per symbol.

In order to stream data into and out of bits, as is required for use
with a physical machine, each intermediate state x must be normal-
ized. In other words, we must write data to disk and decrease x in

order to prevent it from growing out of physical memory bounds,
typically a 32-bit register. Duda [2013] claims that this is possible
by defining a normalized interval [L, bL) such that L = kM for
some k, b ∈ N. In this interval, b represents the divisor required to
normalize the interval. In the encoder, C, whenever x grows larger
than bL, then x is repeatedly normalized by x/b until x ∈ [L, bL).
For each required normalization, the compressor C first writes the
corresponding x (mod b) to disk. Common choices for b are powers
of two in order to map nicely to integer shift and bitwise masking
operations during encoding and decoding. Just as the encoder may
exceed the normalized interval from above, a decoder may require
normalization when x < L. In this case, the decoder will read a
value of size b from disk and increase x by x′ = bx until x is in
the normalized interval. In order to maintain reciprocity with the
encoder, a decoder is required to read from disk at the same point
in the data stream that the corresponding encoder wrote to disk.
However, it is not required that the data for the data stream remain
contiguous in memory, which is a separate property from arithmetic
coding.

3.3.3 Preparing ANS for Parallel Decoding

As with all entropy encoding, the variability of the length of the re-
sulting data stream makes it difficult for decoders to start working
in parallel, or for a single decoder to be parallelized. In general, par-
allel decoding approaches have required additional metadata to to
the start positions in the datastream, increasing the overhead of the
compressed data. ANS provides new properties for being amenable
to GPU decoding. The biggest advantage that ANS gives is that C
and D are inverses of each other, as defined in Section 3.3.2, and
always read or write a value of size b to disk. As Giesen [2014]
shows, if we have N compressors Ci working in parallel, then all
N can operate in lockstep and share a common data stream as long
as they write to disk in a deterministic ordering. To maintain the
reciprocity between the corresponding set of N decoders Di, we
must make sure that all decoders read from the shared stream in the
same order that the encoders wrote to. This will ensure that each of
the inputs to a given decoder Di will be exactly the output from the
corresponding encoder Ci.

Furthermore, if we choose b such that b ≥ M , then we know that
each encoding step will at most write one value in the range [0, b)
to disk during state normalization. This property implies that each
encoder will write at most one value x mod b to disk per encoded
symbol and hence each decoding thread (e.g. on a GPU) will read at
most one such value per decoded symbol. Each state normalization
therefore requires the evaluation of a conditional rather than a loop.
A lock-step SIMD implementation such as those found in GPUs
will always require each decoder to read at the same machine in-
struction, and by masking out the threads that must read from disk,
we can maintain the order of reads and decode in parallel.

Using a value of b = 2n we ensure an integer number of bits being
written and read from disk. Once all encoders Ci finish writing to
the shared stream, N final encoding states xi will be used to seed
the decoders during decompression. We discuss these trade-offs in
more detail in Section 4. To map well to current GPU architectures,
the rest of this paper will assume the settings k = 22, b = 216,
M = 211, and |A| = 28.

4 Parallel Decoding

The design outlined in Section 3 facilitates the decoding of textures
on SIMD architectures. We outline the overall structure of a decom-
pressor in Figure 4. A key feature is that each step in the decoding
process is very well suited for implementation on a SIMD proces-
sor. We have structured our encoders and decoders for use with
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commodity GPUs, but our algorithm can be appropriated to any
SIMD architecture. In practice, the main trade-off of our method
is between decompression speed and compression size. Our com-
pressed representation contains a small header in order to properly
construct the data pointers needed to begin the decoding process on
the GPU. For a full implementation of both CPU encoder with GPU
decoder, please refer to the source code included as supplementary
material.

ANS is able to take advantage of SIMD hardware by interleaving
many compression streams and decoding them in parallel. One of
the biggest constraints is the number of streams that can be inter-
leaved at a time. In order to determine the order in which the inter-
leaved compressors read from the shared compression stream, each
decoder thread must notify all the others that it is reading in order
to advance their shared offset [Giesen 2014]. Although arbitrarily
many encoders can be interleaved, we suggest using 32 or 64 in
order to use the available 32-bit or 64-bit shared registers that map
well to the warp size of certain GPU vendors.

Additionally, the number of symbols encoded per thread has signif-
icant implications on the decoding performance and compression
size. First, each decoding thread must be initialized with the ANS
state of the corresponding encoding stream. The fewer symbols en-
coded per thread will increase the total number of threads and hence
will also increase the storage overhead of the encoder states. How-
ever, decreasing the total number of encoded symbols per thread
increases overall parallelism by giving the GPU additional oppor-
tunity for scheduling work while waiting on reads and writes to
global memory. Finally, the total number of symbols encoded per
thread limits the resolution of the final texture. In our method, we
use a fixed number of symbols per encoding stream in order to keep
all threads busy during decoding. Due to each endpoint belonging
to a block of pixels, the number of symbols per set of encoders
must divide the total number of pixel blocks in the texture. In our
approach, we choose to use 256 symbols per thread requiring the
total number of pixel blocks to be a multiple of 256× 32 = 8192.
The ramifications of these trade-offs are shown in Figure 5.

Each ANS decoder relies on a context model given by the frequen-
cies Fs described in Section 3.3. The decoder needs to know the
values of Fs and Bs along with a fast implementation of L(z).
Hence, each ANS encoded stream contains an additional set of fre-
quencies Fs on disk. Because we know z ∈ [0,M), we can con-
struct a table of size M containing triplets (s, Fs, Bs) for every
possible z. This table can be constructed from the set of Fs as a
parallel prefix-sum to construct the Bs and a parallel binary search
to find s for each value of z. Constructing this table is the first step
of our parallel decoding process as outlined in Figure 4. Using this
table across all decoders requires us to use static histograms as our
probability distribution. Adaptive models are difficult to implement
because of race conditions while updating the model from different
threads.

5 Implementation

Many of the limits of SIMD architectures require careful consid-
eration of implementation details. Our method mainly focuses on
further encoding endpoint compression formats as described in Sec-
tion 2.3. We present an investigation of the compression pipeline
presented in Section 3 with respect to the DXT and PVRTC com-
pression formats. We have chosen these formats due to their sim-
plicity and widespread usage [Iourcha et al. 1999][Fenney 2003].
PVRTC and DXT differ only in the amount of bits allotted to store
the endpoints and the manner in which their corresponding hard-
ware reconstructs the compressed block. The compression quality
of the texture is largely determined by the target hardware com-
pressed format, although DXT and PVRTC usually provide similar
quality encodings.

5.1 DXT

DXT (a.k.a. S3TC) has a number of variations in order to deal
with textures containing alpha, single-channel, and two-channel
textures. Here we will address the most common variation, DXT1,
and note that additional variations involve adding or removing a
pair of channels (DXT3/4) and possibly a separate re-encoding of



additional index blocks (DXT5) [Iourcha et al. 1999].

DXT1 has two palette generation modes depending on which order
the RGB endpoints are placed. If the 16-bit integer representation
of the first endpoint yields a smaller value than the second end-
point, then only three palette colors are generated and the fourth
corresponds to a solid black or transparent pixel. The optimal end-
point values described in Section 3.1 for a given DXT index block
may be generated in either order. In the case in which these end-
points do not generate the expected four-color palette, we discard
the index block as invalid.

During the color transform step as described in Section 3.2, we at-
tempt to maintain the low bit depth of the pixel channels. Maintain-
ing a low bit depth allows us to limit the number of symbols needed
for entropy encoding following the wavelet transform. In the case
of DXT1, endpoints are stored using five, six, and five bits for the
red, green, and blue channels, respectively. Each 565 RGB value
can be losslessly converted to 667 YCoCg [Malvar et al. 2008]. Af-
ter performing the wavelet transform on each channel of the YCoCg
data separately, we need less than eight bits to represent the coef-
ficients. In order to increase parallelism, we use 32 × 32 blocks
of endpoints. As this wavelet transform is operating on endpoints
per 4 × 4 pixel blocks, this implies that we currently limit the di-
mensions of each texture to be a multiple of 128. This block size
was chosen to map well to the common limit of 256 threads per
work-group on modern AMD GPUs.

5.2 PVRTC

PVRTC is similar to DXT in that it has the ability to choose between
opaque and transparent textures in the compressed block represen-
tation. However, in the original PVRTC, the opacity of the color is
determined on a per-endpoint basis rather than on a per-block basis.
As a result, each color contains an extra bit to determine whether
or not the color contains opaque RGB values or transparent RGBA
values. A further bit is provided to alter the generated palette to
provide a similar punch-through alpha as in DXT1. In contrast
to DXT, these features of PVRTC are agnostic to the ordering of
the endpoints, so we can choose opaque endpoints every time to
match the generated endpoints from the re-encoding described in
Section 3.1 [Fenney 2003].

Additionally, PVRTC uses lower-precision endpoints than DXT1.
Where DXT1 stores three-channel endpoints with 565 precision,
PVRTC stores endpoints using 555 and 554 precision. With 565
endpoints, the additional bit in the green channel requires addi-
tional bits in the resulting YCoCg transform. However, using 555
endpoints restricts the additional bits needed for YCoCg to an addi-
tional bit in the Co and Cg channels, meaning these endpoints can
be represented using 566 YCoCg, i.e. two fewer bits per endpoint
than DXT1.

6 Results

In order to compare our data against prior state of the art methods,
we have restricted our testing to DXT1 based textures. We have
used Barett’s port of Giesen’s DXT encoder as our ground truth
for optimal DXT encoding due to its overall quality of compressed
output and encoding speed [Barett and Giesen 2009]. We measure
against raw images, stored as BMP, standard JPEG compression,
raw DXT1 compression, and the Crunch library [Geldreich 2012].
For any given set of images, our method produces similar quality
results as leading DXT1 compressors, as shown in the detailed anal-
ysis of Figure 9. Additional close-up comparisons can be found in
the supplementary material.

Format CPU
Load

CPU
Decode

GPU
Load

GPU
Decode Total

JPG 0.1 51.9 2.8 0 54.8
DXT 3.0 0 0.4 0 3.4
BMP 116.3 0 2.2 0 118.5
CRN 0.4 7.7 0.4 0 8.5
GST 0.5 0 0.3 2.5 3.3

Table 1: Comparison of various timings in milliseconds for differ-
ent compression schemes. We test our method against various for-
mats rendering a set of frames from a 360◦ video at 4K resolution
(3584× 1792) similar to motion JPEG video [1992].

For fair comparison, we have chosen the maximum quality set-
tings for Crunch and have chosen settings for our method to be
E = 30, as described in Section 3.1. For these settings, on a typ-
ical 512 × 512 texture, our method takes about 0.76s to compress
compared to the 6.32s for Crunch. However, as can be seen in Fig-
ure 7, our compression method has slightly larger variability than
Crunch in terms of optimizing for rate-distortion. One of the main
sources of this variability is the discrepancy in compressed index
data, which is the least amenable to entropy encoding due to its
incoherency (Figure 2). The only parameter that we can use to
control the rate-distortion properties is the error threshold E that
is fairly coarse grained, as shown in Figure 6. The global dictio-
nary of Crunch also gives it an advantage on hard-to-compress im-
ages since neighboring redundancies are generally hard to find. To
our benefit, however, using a truncated dictionary does improve the
compression size for many textures in the Kodak data set, as shown
in Figure 8. We present a breakdown of the size of each of the
parts of a GST texture in Figure 10. This benefit arises due to the
assumption that neighboring blocks produce similar palette indices
during compression and as a result our method is dependent on the
details of the image, similar to JPEG.

We use two main benchmarks for testing the performance benefits
of our implementation. The first benchmark measures the average
load time for all 600 4K resolution frames in a 360◦ video using
a motion JPEG application similar to Pohl et al. [2014]. The sec-
ond benchmark measures the time required to load all 128 Pixar
textures, each with dimensions 512 × 512, into GPU memory on
a single CPU thread [Pixar 2015]. One of the main benefits of our
method is the reduction in load times. We observe this benefit in
both the batch load times for the Pixar dataset described in Table 2
and our 360◦ video benchmark in Figure 1. All results are mea-
sured on desktop PC running Windows 7 on an Intel Xeon 8 core
CPU and AMD R9 Fury GPU. As demonstrated in these results,
the raw DXT1 load times are significantly faster than the super-
compressed textures. Disk seek times and actual disk reads provide
a significant amount of inconsistency in disk load timings. In our
measurements we make sure that each of the files are fully loaded in
the operating system’s page cache prior to doing any measurements
in order to improve consistency. We observed significantly longer
load times of high resolution DXT and BMP frames due to the full
saturation of this cache. Our method, on the other hand, is partic-
ularly well-suited to high resolution textures due to the increased
parallelism offered in the GPU decoder.

We also investigate some of the tradeoffs presented in Section 4. In
particular, we show the impact of varying the number of symbols
encoded per thread for a single large resolution texture. The perfor-
mance implications are twofold. Fewer symbols per thread leads to
increased parallelism from having more decoders in flight. On the
other hand, more symbols per thread reduces the amount of on-disk
overhead per group of interleaved decoders. The speed of using
more or fewer symbols per thread also depends on whether or not
we copy the ANS decoding table into local memory for each group
of decoders (Figure 4). These tradeoffs are shown in Figure 5.
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Figure 5: The affect of varying the number of symbols per decod-
ing thread, and hence number of parallel decoders, as a compar-
ison between average file size and decoding time of 600 frames of
a 4K 360◦ video. When decoding few symbols per thread, size is
dominated by storing many encoder states, although the increased
parallelism helps decoding speed. Copying the ANS decoding table
(Section 4) into local memory only benefits decoding speed when
there is enough work per thread to benefit from fewer global reads.
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Figure 6: The difference in PSNR and compression size as a func-
tion of our error threshold for a few images from the Kodak test
suite. As we increase our error threshold, we see a decrease in the
size of our index data and a drop in our PSNR. Both of these met-
rics are sensitive based on the features of the encoded image. The
PSNR stabilization after an increase in the error threshold supports
the assumption of block-level coherency between indices.

7 Discussion

Based on the results in Section 6, we observe significant benefits
from using a GPU-based decoding algorithm in the general case.
In particular, very large textures are the most susceptible to the se-
rial decoding requirements of traditional entropy encoders. In other
applications, a multicore machine may parallelize the decoding of
multiple low-resolution textures, which may be beneficial in terms
of reducing the overhead of interfacing with the GPU. We observed
that a set of per-core Crunch decoders processed all 128 textures of
the Pixar dataset at similar load times to our method.

Limitations: Although our method presents many advantages,
there are a few limitations in practice. First, our current imple-
mentation requires additional scratch memory for intermediate re-
sults during decompression. Although the additional memory is
minimal, about 3X the size of the final texture, it may be a limit-
ing factor for streaming texture applications that try to exhaust the
available GPU resources. However, this limitation may be over-
come by using the final compressed texture as scratch memory, but
this reduces efficiency by requiring unaligned memory reads and
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Figure 7: We show PSNR versus bitrate values for our method
against other compression schemes. The data shows that our
method provides bit rates and quality comparable to the state of
the art supercompressed textures. Each data point is an image in
the (top) Kodak [1999] and (bottom) Pixar [2015] datasets with
dimensions 512× 512.

Format JPEG PNG DXT1 Crunch GST
Time (ms) 848.6 1190.2 85.8 242.3 93.4
Disk size (MB) 6.46 58.7 16.8 8.50 8.91
CPU size (MB) 100 100 16.8 16.8 8.91

Table 2: Quantitative results of single-threaded loading of the 128
textures in the Pixar dataset [2015]. The CPU size represents the
size of all textures in memory after any decoding procedure and
prior to uploading to the GPU. The disk bandwidth is sufficiently
fast to make decoding textures the bottleneck.

writes along with additional synchronization requirements. This
sort of ’in-place’ decoding presents additional performance con-
cerns by retrieving the values for individual channels in each of the
endpoints as described in Section 5.

Additionally, the results in Section 6 are presented using our refer-
ence implementation written in OpenCL for portability. However,
during our experiments, we noticed significant stalls on the GPU
that were unaccounted for. Our implementation would benefit from
additional fine-grained control over the GPU programming inter-
face, such as those presented in the Vulkan API, and further opti-
mization could go a long way to realizing additional performance
gains in our application.

Future Work: Although our implementation focuses on PVRTC
and DXT1, more recent endpoint methods such as BPTC and ASTC
have introduced increased complexity in the compressed represen-
tation of textures [OpenGL 2010; Nystad et al. 2012]. They allow
multiple palettes per block and variable bit depths for their palette
indices. Additionally, ASTC provides variable index block dimen-
sions that presents increased complexity to our re-encoding scheme.
Although our method works with simple endpoint compressed for-
mats, extensions to more complicated formats that preserve the ad-
ditional quality may be possible.

HDR compression formats present another natural extension of our



Compressed Indices Size
Compressed Raw Crunch Predicted GST

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

25

50

75

Kodak Test Image

S
iz

e 
(K

B
)

Figure 8: We demonstrate a comparison of the compressibility of various approaches to preprocessing index data. This graph demonstrates
the size of the compressed index data for various algorithms against the Kodak data set [1999] using the same Huffman encoder used in the
Crunch textures. Palette indices are classically the most incoherent data in compressed textures. We show that by limiting the dictionary
lookup to the k most recently added dictionary entries, we increase the entropy encoding capabilities of the index data significantly over
Crunch at maximum quality settings. Compressed raw is Huffman encoding applied to the unprocessed index data while the predicted method
is the same method used by Ström and Wennersten [2011] applied to DXT textures.
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Figure 9: A zoomed-in view of the visual quality of various com-
pressed formats. The only stage in our compression pipeline that
may introduce additional error is the re-encoding stage. Here we
show that the amount of error introduced is imperceptible with re-
spect to other DXT compression formats.
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Figure 10: An average of the percentage-wise breakdown of each
of the constituent parts of a GST encoded texture using various er-
ror thresholds. As we allow more error, the size of the dictionary
decreases as a percentage of overall space consumed. We used both
the Pixar and the Kodak data sets.

work. We also believe that the tabled compression formats such as
ETC1 and ETC2 can be tackled using a variation of our algorithm.
We do not expect our algorithm to emit compression rates as low
as those presented by Ström and Wennersten [2011]. However, in-
terpreting the parameters of tabled compressed textures as separate
low-resolution images may significantly reduce the overhead of this
class of compressed textures.

Although our benchmark uses 360◦ video, our method is inher-
ently designed for single-texture representations. A method similar
to Olano et al [2011] is possible where an entire mip-map chain can
be used to encode each of the individual endpoint images rather
than an explicit wavelet transform. Additionally, the endpoint im-
ages need not be compressed independently, as they have a lot of
coherence that can be exploited to see additional gains in compres-
sion performance.

Conclusions: We have presented a new algorithm for storing com-
pressed textures on disk. The benefits of our algorithm show a sig-
nificant improvement in decoding speed over state of the art CPU
techniques. Furthermore, our algorithm provides a way to upload
texture data directly to the GPU for decoding in order to maintain
the CPU-GPU benefits. In particular, we believe that our method is
best suited for streaming high-resolution textures from disk and net-
work. In certain image-heavy applications, such as Google Street
View, that require fast access to remote image data, and then ma-
nipulate it using the GPU, we believe our method will provide the
most benefit. Additionally, as more web page renderers move to
the GPU, we believe that the improved decoding speed will be a
boon for quickly introducing image data to mobile devices where
decoding speed and responsiveness become increasingly important.
As GPUs become more widespread in general, effective streaming
solutions present a growing need.
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STRÖM, J., AND AKENINE-MÖLLER, T. 2005. iPACK-
MAN: high-quality, low-complexity texture compression
for mobile phones. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM, HWWS ’05, 63–70.
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